数据分析实战:数据分析的5大关键环节

本文详细介绍了数据分析的五个关键环节:明确分析目的、确定数据源与数据口径、数据处理、数据分析和输出。强调了明确用户、需求和场景的重要性,数据清洗、补全和整合的必要性,以及数据分析方法的选择,最后讨论了数据可视化的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《数据分析实战:数据分析的5大关键环节》

 

本次内容包括5个部分:

1.明确数据分析目的

2.明确数据源及数据口径

3.数据处理

4.数据分析

5.输出

 

一、明确数据分析目的

在进行数据分析之前首先要明确数据分析为什么要做?下面通过用户、需求、场景三要素拆解法来明确数据分析的目的。

1、用户

这里提到的用户是指数据分析内容或者结果给谁看?这里的目标用户主要分三类:你自己、企业内部业务部门、外部客户。这里主要对后两种进行解析。

企业内部业务部门:

这类用户通常会通过制定不同策略提升企业某些指标的提升,可以是市场部门、运营部门或者是维系部门。他们往往指导企业内部积累了大量数据,但是不知道如何使用,如何通过数据分析形成有效的决策。

外部客户:

这类用户通常不具有某一领域或多个领域的行业数据,希望通过这些数据了解他的用户或市场,而恰巧你的企业具备这样的数据,这种情况下通过数据价值变现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值