xgboost入门以及windows下安装及使用二

31 篇文章 19 订阅 ¥29.90 ¥99.00
这篇博客详细介绍了在Windows操作系统中如何使用xgboost进行机器学习模型的训练。作者提供了my-train.txt数据集的加载过程,并展示了训练过程中评估指标的变化,所有迭代的训练误差和验证误差均为0。最后,博客提及了模型预测的代码实现,包括加载模型和数据进行预测的步骤。
摘要由CSDN通过智能技术生成

如果看到上篇,xgboost没有安装成功的可以提问我,本文主要讲xgboost的测试例子,例子模仿别人的,但补充了很多,希望能帮到更多人!

import sys,os
sys.path.append('E:\\xgboost-master\\xgboost-master\\wrapper')

import numpy as np
import scipy.sparse
import xgboost as xgb

dtrain = xgb.DMatrix('E:\\my-train.txt');
dtest = xgb.DMatrix('E:\\my-test.txt');

param = {'max_depth':6, 'eta':0.3, 'silent':1, 'objective':'binary:logistic'}

watchlist  = [(dtest,'eval'), (dtrain,'train')]  
num_round = 20  
bst = xgb.train(param, dtrain, num_round, watchlist)  
  
# this is prediction  
preds = bst.predict(dtest)  
labels = dtest.get_label()  
print ('erro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bboyzqh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值