学过数值积分的应该知道,有限元中的积分点指高斯积分点,因为这些点的收敛性好,精度高。
1. 节点
以简单矩形单元的温度为例:四个节点i,j,m,n的温度分别为Ti,Tj,Tm,Tn.
则以单元内自然坐标(x,y),(-1,-1),(-1,1),(1,-1),(1,1)分别为四个节点,单元内温度分布为:
T={Si, Sj, Sm, Sn} {Ti, Tj, Tm, Tn}
其中,Si=1/4(1-x)(1-y),Sj=1/4(1+x)(1-y)] ,Sm=1/4(1+x)(1+y),Sn=1/4(1-x)(1+y)
(单元的形函数我们可以从手册中查到)
从而我们知道了温度在单元内的分布。
2. 积分点
原因:1,费时;2,Mindlin中厚板有剪力锁死问题,有时候需要采用缩聚积分),所以有些书上会把2节点梁单元的刚度阵直接写出来,但是再复杂点的单元,就使用数值积分(Newton-Cotes积分和高斯积分)
牛顿-科斯的积分点就是节点,这样得到的质量矩阵是集中质量阵形式
个人理解:
1.节点作用:构造形函数,节点的多少描述规则形状单元内的应力的近似分布情况,并获取节点上的位移值
2.积分点作用:构造规则形状单元与曲边(曲面)单元的转化的变换函数,积分点的选取多少和选取的位置直接关系到这种“映射”的精确程度,刚度矩阵、边界条件的转化都用到了坐标变换的积分关系,一般取高斯积分点能使被积函数计算精度尽量高。对于newton-cote积分点的选取,这种“映射”看起来,节点和积分点是同一个位置或说是同一点,而对于高斯积分点位置与节点是不同的。
故有如下结果:
1.ANSYS手册(Chapter 13)上列出各种单元的积分点位置。
2.王瑁成的《有限单元法》第五章,有解释为什么积分点应力更加精确。
3.因为积分点应力更精确,所以我们一般采用积分点的应力内插或外延确定节点应力。特殊情况除外。
单元节点和积分点是不同的两个概念!
积分点是在进行函数积分的时候,为了增加精度,选取的积分点,也就是高斯积分
单元节点是你选取单元的时候就已经定下的点。
一定有单元节点,但不一定有积分点
有限元求解的结果是每个节点的位移,然后通过形函数插值得到单元任何一个点的位移,当然可以计算出高斯积分点的位移。至于应力,一般是先求解出高斯点出的应力,然后通过平均化的技术平均到每个节点上,高斯点处的应力精度最高,节点最差。