目前的有限元方法主要是采用等参单元以及非协调元,由于子单元非常复杂,通常情况下导致Jacobi及其行列式计算比较复杂,此时一般都不能进行显示积分计算(刚度矩阵K的计算中含有Jacobi行列式),而需要借助于数值积分方法。
数值积分方法主要是采用高斯数值积分,不同的单元形式其积分点数是不同的,高斯积分的阶次与插值函数的最高方次项有关。高斯积分阶数与被积函数所有项次精确积分所需要阶数相同的积分方案称为完全积分,而低于积函数所有项次精确积分所需要
目前的有限元方法主要是采用等参单元以及非协调元,由于子单元非常复杂,通常情况下导致Jacobi及其行列式计算比较复杂,此时一般都不能进行显示积分计算(刚度矩阵K的计算中含有Jacobi行列式),而需要借助于数值积分方法。
数值积分方法主要是采用高斯数值积分,不同的单元形式其积分点数是不同的,高斯积分的阶次与插值函数的最高方次项有关。高斯积分阶数与被积函数所有项次精确积分所需要阶数相同的积分方案称为完全积分,而低于积函数所有项次精确积分所需要