Euler published the remarkable quadratic formula:
n² + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.
Using computers, the incredible formula n² 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, 79 and 1601, is 126479.
Considering quadratics of the form:
n² + an + b, where | a| 1000 and | b| 1000
where | n| is the modulus/absolute value of n
e.g. |11| = 11 and | 4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
{
if (x == 1)
{
return false;
}
for (int i = 2; i*i <= x;i++)
{
if (x%i == 0)
{
return false;
}
}
return true;
}
{
clock_t te,ts;
ts=clock();
int answer = 0,num,count,max = 0;
int a,b,n;
for (a = -999; a < N; a++)
{
for (b = -999; b < N; b++)
{
count = 0;
for (n = 0; ;n++)
{
num = n*(n+a)+b;
if (num > 0 && prime(num)==true)
{
count++;
}
else
{
break;
}
}
if (count > max)
{
max = count;
answer = a*b;
}
}
}
printf("\nanswer:%d",answer);
te=clock();
printf("\ntime difference: %ds\n",(te-ts)/CLOCKS_PER_SEC);
return 0;
}