欧拉计划Problem 27

Euler published the remarkable quadratic formula:

n² + n + 41

It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.

Using computers, the incredible formula  n² − 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, −79 and 1601, is −126479.

Considering quadratics of the form:

n² +  an +  b, where | a< 1000 and | b< 1000

where | n| is the modulus/absolute value of  n
e.g. |11| = 11 and | −4| = 4

Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.

#define N 1000
bool prime(int x)
{
 if (x == 1)
 {
  return false;
 }
 for (int i = 2; i*i <= x;i++)
 {
  if (x%i == 0)
  {
   return false;
  }
 }
 return true;
}
int main()
{
 clock_t te,ts;
 ts=clock();
 int answer = 0,num,count,max = 0;
 int a,b,n;
 for (a = -999; a < N; a++)
 {
  for (b = -999; b < N; b++)
  {
   count = 0;
   for (n = 0; ;n++)
   {
    num = n*(n+a)+b;
    if (num > 0 && prime(num)==true)
    {
     count++;
    }
    else
    {
     break;
    }
   }
   if (count > max)
   {
    max = count;
    answer = a*b;
   }
  }
 }
 printf("\nanswer:%d",answer);
 te=clock();
 printf("\ntime difference: %ds\n",(te-ts)/CLOCKS_PER_SEC);
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值