猜牌问题:S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:
- 红桃A、Q、4
- 黑桃J、8、4、2、7、3
- 草花K、Q、5、4、6
- 方块A、5
约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话:
- P先生:我不知道这张牌。
- Q先生:我知道你不知道这张牌。
- P先生:现在我知道这张牌了。
- Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
思路
根据第一句,点数必须有多种花色,这样点数只可能是AQ45:红桃AQ4,黑桃4,草花Q54,方块A5。这个信息Q在P说话以前已经知道,我们旁观者则只能在看到此句以后知道。
根据第二句,所求花色必须满足所有的点数都有重复(否则Q不能在P说话之前就推出P无法知道花色。),于是花色可以是红桃或方块,这个信息也被P掌握了。
然后第三句的意思是P根据
- 已知点数
- 花色只能是红桃或方块
这两个信息确定了答案,这意味着点数不是A,可能是Q、4或5。这个信息也被Q掌握了。
然后第四句。现在Q已经知道点数可能是Q、4、5,花色可能是红桃或方块。假如花色是红桃,那么Q应该仍然无法确定点数,则无法知道答案。
所以点数只能是5,同时得出花色是方块。
总结
网上给出的答案一般不会错,至于解析过程就不一定了,最容易忽略的是加粗的那句。因此我给出了我认为正确的解释。这个题我第一次见是在10年前了,当时看题解看不懂,现在回过头来,其实只是因为对排除法的掌握不够透彻而已……