Codeforces851D Arpa and a list of numbers(素数筛)

/*
素数筛
有n个数,可以进行两种操作:
1,删除一个数,花费x
2,某个数的值+1,花费y
现在想让序列所有数的gcd>1,求最小花费。(全部删除也合法)
枚举数列中所有的素数i,如果某个数a[j]不是i的倍数,
将其删除花费为v1=x,增加到是i倍数花费为v2=(i-a[j]%i)*y;
(n-cnt)*x删除所有数,(n-cnt)*y,所有数+1
*/
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn=1e6+5;
int n;
LL x,y;
int a[maxn];
LL sum[maxn];
bool is_prime[maxn];//i是否为素数
void init()//初始化
{
    memset(is_prime,0,sizeof(is_prime));
    for(int i=2;i<maxn;i++) is_prime[i]=1;
}
int main()
{
    ios::sync_with_stdio(false);
    while(cin>>n)
    {
        cin>>x>>y;
        memset(sum,0,sizeof(sum));//某个数的个数
        for(int i=0; i<n; i++)
        {
            cin>>a[i];
            sum[a[i]]++;
        }
        LL ans=(LL)n*x;//删除所有的数
        LL cnt;
        init();
        for (int i=2;i<maxn;i++)//枚举素数,改数不进行操作
        {
            if(is_prime[i])
            {
                cnt=sum[i];//i以及i的倍数的个数
                for(int j=i+i;j<maxn;j+=i)//素数筛法
                {
                    cnt+=sum[j];
                    is_prime[j]=0;
                }
                if((n-cnt)*min(x,y)<ans)//可能有更小答案
                {
                    LL ret=0;
                    for(int j=0;j<n;j++)
                    {
                        if(a[j]%i!=0)
                        {
                            LL v1=x;//删除
                            LL v2=(i-a[j]%i)*y;//增加成i的倍数
                            ret+=min(v1,v2);
                        }
                    }
                    ans=min(ans,ret);//更新答案
                }
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值