OpenCV处理椒盐噪声以及提高对比度

1.通过中值模糊处理椒盐噪声
源码:

import cv2 as cv

def median_blur_demo(image):
    dst = cv.medianBlur(image, 5)
    cv.imshow("median_blur_demo", dst)

src = cv.imread("/home/jon/opencv-python-picture/lenanoise.png")

cv.imshow("normal", src)
median_blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

图像对比:
在这里插入图片描述
很明显还是可以看出来,中值滤波虽然处理了椒盐噪声,但是还是牺牲了一些清晰度的

2.通过均值模糊实现图像的模糊处理

源码:

import cv2 as cv

def blur_demo(image):
	#值越大,模糊越强烈
    dst = cv.blur(image, (5, 5))
    cv.imshow("blur_demo", dst)



src = cv.imread("/home/jon/opencv-python-picture/example.png")

cv.imshow("normal", src)
blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

图像对比:
在这里插入图片描述

3.通过自定义模糊提供图像的对比度
源码:

import cv2 as cv
import numpy as np

def custom_blur_demo(image):
    #kernel = np.ones([5, 5], np.float32)/25
    kernel = np.array([[0, -1, 0],[-1, 5, -1],[0, -1, 0]], np.float32)
    dst = cv.filter2D(image, -1, kernel=kernel)
    cv.imshow("custom_blur_demo", dst)



src = cv.imread("/home/jon/opencv-python-picture/example.png")

cv.imshow("normal", src)
custom_blur_demo(src)

cv.waitKey(0)
cv.destroyAllWindows()

图像对比:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值