傅里叶变换推导

一、傅里叶变换一般形式:


正弦函数的一般形式:

\large f(t)=Asin(wt+\varphi),(1)

其中:\large A为振幅; \large w为角速度;\large \varphi为初相;

对于一个函数\large f(x),设其周期为\large T(若为非周期函数,可以认为\large T=+\infty),则其傅里叶变换即是将该函数用一系列正弦函数的线性组合来表示,形如:

\large f(x)=\int_{0}^{T}A_{t}sin(w_{T}tx+\varphi_{t}) dt,(2)

其中,\large w_{T}=\frac{2\pi}{T},而对于每一正弦分量,其相应的角速度为,\large w_{t}=w_{T}t=\frac{2\pi}{T}t

显然地,当\large t\large [0,T]上连续取值时,对于(2)式任意两个不同的正弦分量,有如下情况:

\large \int_{0}^{T}A_{m}sin(w_{T}t_{m}x+\varphi_{t_{m}})\times A_{n}sin(w_{T}t_{n}x+\varphi_{t_{n}})dx=\left\{\begin{matrix} 0 &, orthogonal \\ Non-zero & ,Non-orthogonal \end{matrix}\right.,(3)

 且积分非0的情况一定存在;

需要注意的是:

只有\large f(x)为非周期函数时,(3)式中的\large T和(2)式中的\large T才会相等,此时,严格来讲二者虽然取值相同,但具有不同含义:(3)式中的\large T是变量\large x的时域定义域上界,(2)式中的\large T是变量\large t的定义域上界,由于每个\large t的取值唯一确定着一个正弦分量,因此(2)式中的\large T也可以看作是变量\large t的“频域”定义域上界。

(3)式的成立意味着(2)式中的正弦分量是冗余的,同时由于非正交分量的存在,使得对于(2)式中的任一正弦分量,无法求得其相应的参数,换句话说,(2)式理论上成立,但没什么用。


为了能够求解各正弦分量,必需要保证\large f(x)的正弦分量组中的任意两个正弦分量相互正交,易证:三角函数系\large (1,cosx,sinx,cos2x,sin2x,...,coxnx,sinnx)中任意两个三角函数相互正交,且是在区间\large [0,T]上的完备正交集,于是可将(2)式改写为:

\large f(x)=\int_{0}^{T}A_{t}sin(w_{T}tx+\varphi_{t}) dt

\large =\int_{0}^{T}A_{t}sin\varphi_{t}cos(w_{T}tx)+ A_{t}cos\varphi_{t}sin(w_{T}tx)dt

\large =\int_{0}^{T}\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)dt

\large \Rightarrow \sum_{t=0}^{T}[\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)],t\in N,(4)

\large x\in[0,T],所以有:\large w_{T}x\in[0,2\pi],显然,对于定义在\large x定义域上的正弦分量\large sin(w_{T}tx)或余弦分量\large cos(w_{T}tx)均属于上述正交三角函数系,所以对于(4)中的任意两个不同的正弦或余弦分量,其在\large x上的乘积的积分为0,即正交。


公式(4)分量系数计算:


 \huge \widetilde{A_{0}}:

对(4)式两边积分有:

\large \int_{0}^{T}f(x)dx=\int_{0}^{T}\sum_{t=0}^{T}[\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)]dx,(5)

                         \large =\int_{0}^{T}\widetilde{A_{0}}+\sum_{t=1}^{T}[\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)]dx

                         \large =T\cdot \widetilde{A_{0}}

  所以有:

  \large \widetilde{A_{0}}=\frac{1}{T}\int_{0}^{T}f(x)dx,(6)


\huge \widetilde{A_{t_{k}}}:

对(5)式两边同乘以\large cos(w_{T}t_{k}x),t_{k}\in[1,T],t_{k}\in N^{+},有:

\large \int_{0}^{T}f(x)cos(w_{T}t_{k}x)dx=\int_{0}^{T}\sum_{t=0}^{T}\left \{ \widetilde{A_{t}}cos(w_{T}tx)cos(w_{T}t_{k}x)+\widetilde{ B_{t}}sin(w_{T}tx)cos(w_{T}t_{k}x) \right \}dx

                                                \large =\int_{0}^{T}\widetilde{A_{t_{k}}} \cdot cos(w_{T}t_{k}x)cos(w_{T}t_{k}x)dx

                                                \large =\int_{0}^{T}\widetilde{A_{t_{k}}} \cdot \frac{1+cos(2w_{T}t_{k}x)}{2}dx

                                                \large =\frac{T}{2}\cdot \widetilde{A_{t_{k}}},(7)

故有:

          \large \widetilde{A_{t_{k}}}=\frac{2}{T}\int_{0}^{T}f(x)cos(w_{T}t_{k}x)dx,(8)


\huge \widetilde{B_{t_{k}}}:

对(5)式两边同乘以\large sin(w_{T}t_{k}x),t_{k}\in[1,T],t_{k}\in N_{+},有:

\large \int_{0}^{T}f(x)sin(w_{T}t_{k}x)dx=\int_{0}^{T}\sum_{t=0}^{T}\left \{ \widetilde{A_{t}}cos(w_{T}tx)sin(w_{T}t_{k}x)+\widetilde{ B_{t}}sin(w_{T}tx)sin(w_{T}t_{k}x) \right \}dx

                                                \large =\int_{0}^{T}\widetilde{B_{t_{k}}}sin(w_{T}t_{k}x)sin(w_{T}t_{k}x)dx

                                                \large =\int_{0}^{T}\widetilde{B_{t_{k}}} \cdot \frac{1-cos(2w_{T}t_{k}x)}{2}dx

                                                \large =\frac{T}{2}\cdot \widetilde{B_{t_{k}}},(9)

故有:

          \large \widetilde{B_{t_{k}}}=\frac{2}{T}\int_{0}^{T}f(x)sin(w_{T}t_{k}x)dx,(10)


从上面可以看到,(6)式,(8)式,(10)式,为傅里叶变换的系数计算公式,一旦得到这三个公式,那么傅里叶变换的一般形式很容易求得。


二、傅里叶变换的指数形式

有欧拉公式如下:

\large e^{ix}=cosx+isinx,(11)

则(4)式可变换如下:

\large f(x)=\sum_{t=0}^{T}[\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)]

          \large =\sum_{t=0}^{T}\left \{ \widetilde{A_{t}} \cdot \frac{e^{j\cdot w_{T}tx}+e^{-j\cdot w_{T}tx}}{2} + \widetilde{ B_{t}} \cdot \frac{e^{j\cdot w_{T}tx}-e^{-j\cdot w_{T}tx}}{2j} \right \}

         \large =\sum_{t=0}^{T}\left \{ \widetilde{A_{t}} \cdot \frac{e^{j\cdot w_{T}tx}+e^{-j\cdot w_{T}tx}}{2} - j\cdot \widetilde{ B_{t}} \cdot \frac{e^{j\cdot w_{T}tx}-e^{-j\cdot w_{T}tx}}{2} \right \}

         \large =\sum_{t=0}^{T}\left \{\frac{\widetilde{A_{t}} - j\cdot \widetilde{ B_{t}}}{2} \cdot e^{j\cdot w_{T}tx} +\frac{\widetilde{A_{t}} + j\cdot \widetilde{ B_{t}}}{2} \cdot e^{-j\cdot w_{T}tx} \right \}

         \large =\sum_{t=0}^{T}\left \{C_{t}^{+} \cdot e^{j\cdot w_{T}tx} +C_{t}^{-} \cdot e^{-j\cdot w_{T}tx} \right \},t\in N,(12)

其中:

\large \left\{\begin{matrix} C_{t}^{+}=\frac{\widetilde{A_{t}} - j\cdot \widetilde{ B_{t}}}{2} \\ C_{t}^{-}=\frac{\widetilde{A_{t}} + j\cdot \widetilde{ B_{t}}}{2} \end{matrix}\right.


对于公式(12)中的任意两个分量间,在x区间\large [0,T]上的内积,有以下几种情况:

 


情况一:

\large t_{m},t_{n}\in[0,T],t_{m},t_{n}\in N,则有:

1)若\large t_{m},t_{n}至少一个不为0:

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{j\cdot (t_{m}+t_{n})w_{T}x}dx

                                     \large =\int_{0}^{T}cos \left \{ (t_{m}+t_{n})w_{T}x \right \}+j\cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \}dx

                                     \large =\left.\begin{matrix} \frac{1}{(t_{m}+t_{n})w_{T}} \cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} - \left.\begin{matrix} j\cdot \frac{1}{(t_{m}+t_{n})w_{T}} \cdot cos\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}

\large t_{m}+t_{n}\in N^{+},w_{T}=\frac{2\pi}{T},所以有:

  \large \left.\begin{matrix} \frac{1}{(t_{m}+t_{n})w_{T}} \cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} - \left.\begin{matrix} j\cdot \frac{1}{(t_{m}+t_{n})w_{T}} \cdot cos\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}{ = 0 + 0=0}

故有:

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{j\cdot w_{T}t_{n}x}dx=0,(13)

2)若\large t_{m},t_{n}均为0:

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{j\cdot (t_{m}+t_{n})w_{T}x}dx=\int_{0}^{T}e^{0}dx{=T,(14)}

 


情况二:

\large t_{m},t_{n}\in[0,T],t_{m},t_{n}\in N,则有:

1)若\large t_{m},t_{n}至少一个不为0:

\large \int_{0}^{T}e^{-j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{-j\cdot (t_{m}+t_{n})w_{T}x}dx

                                     \large =\int_{0}^{T}cos \left \{ (t_{m}+t_{n})w_{T}x \right \}-j\cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \}dx

                                     \large =\left.\begin{matrix} \frac{1}{(t_{m}+t_{n})w_{T}} \cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} + \left.\begin{matrix} j\cdot \frac{1}{(t_{m}+t_{n})w_{T}} \cdot cos\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}

\large t_{m}+t_{n}\in N^{+},w_{T}=\frac{2\pi}{T},所以有:

\large \left.\begin{matrix} \frac{1}{(t_{m}+t_{n})w_{T}} \cdot sin\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} + \left.\begin{matrix} j\cdot \frac{1}{(t_{m}+t_{n})w_{T}} \cdot cos\left \{ (t_{m}+t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}{ = 0 + 0=0}

故有:

\large \int_{0}^{T}e^{-j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=0,(15)

2) 若\large t_{m},t_{n}均为0:

\large \int_{0}^{T}e^{-j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{-j\cdot (t_{m}+t_{n})w_{T}x}dx=\int_{0}^{T}e^{0}dx{=T,(16)}


情况三:

\large t_{m},t_{n}\in[0,T],t_{m},t_{n}\in N,则有:

1)若\large t_{m}\neq t_{n}:

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{j\cdot (t_{m}-t_{n})w_{T}x}dx

                                                   \large =\int_{0}^{T}cos \left \{ (t_{m}-t_{n})w_{T}x \right \}+j\cdot sin\left \{ (t_{m}-t_{n})w_{T}x \right \}dx

                                                   \large =\left.\begin{matrix} \frac{1}{(t_{m}-t_{n})w_{T}} \cdot sin\left \{ (t_{m}-t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} - \left.\begin{matrix} j\cdot \frac{1}{(t_{m}-t_{n})w_{T}} \cdot cos\left \{ (t_{m}-t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}

\large t_{m}-t_{n}\in Z,w_{T}=\frac{2\pi}{T},所以有:

\large \left.\begin{matrix} \frac{1}{(t_{m}-t_{n})w_{T}} \cdot sin\left \{ (t_{m}-t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T} - \left.\begin{matrix} j\cdot \frac{1}{(t_{m}-t_{n})w_{T}} \cdot cos\left \{ (t_{m}-t_{n})w_{T}x \right \} \end{matrix}\right|_{0}^{T}{ = 0 + 0=0}

故有:

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=0,(14)

2) 若\large t_{m}=t_{n}

\large \int_{0}^{T}e^{j\cdot w_{T}t_{m}x}\cdot e^{-j\cdot w_{T}t_{n}x}dx=\int_{0}^{T}e^{0}dx=T


总结一下,上述三种情况包含了公式(12)中所有分量两两内积组合的情况,可以看到,\large (1,e^{j\cdot 1w_{T}x},e^{j\cdot 2w_{T}x},...,e^{j\cdot Tw_{T}x}),(1,e^{-j\cdot 1w_{T}x},e^{-j\cdot 2w_{T}x},...,e^{-j\cdot Tw_{T}x})均为在x的区间\large [0,T]上的正交函数集,且\large \forall t\in[1,T] ,\begin{vmatrix} e^{j\cdot tw_{T}x} \end{vmatrix}=0 ,\begin{vmatrix} e^{-j\cdot tw_{T}x} \end{vmatrix}=0


证明:对于任意的\large t\in N_{+},\large e^{\pm j\cdot tw_{T}x}\large x的区间\large [0,T]上的积分为0

\large \forall t\in N_{+}

\large \int_{0}^{T}e^{\pm j\cdot tw_{T}x}dx=\int_{0}^{T}cos\left ( tw_{T}x \right )\pm j\cdot sin\left (tw_{T}x \right )dx

                              \large =\left.\begin{matrix} \frac{1}{tw_{T}} \cdot sin\left ( tw_{T}x \right ) \end{matrix}\right|_{0}^{T} \left.\begin{matrix} \mp j\cdot \frac{1}{tw_{T}} \cdot cos\left (tw_{T}x \right ) \end{matrix}\right|_{0}^{T}         

                              \large =0\mp0=0


可见,函数集\large (1,e^{j\cdot 1\cdot w_{T}x},e^{-j\cdot 1\cdot w_{T}x},e^{j\cdot 2\cdot w_{T}x},e^{-j\cdot 2\cdot w_{T}x}...,e^{j\cdot T\cdot w_{T}x},e^{-j\cdot T\cdot w_{T}x})中,除了1之外,其余函数均为周期函数,且在一个周期\large T上的积分均为0


公式(12)分量系数计算:


\huge C_{0}^{+},C_{0}^{-}:

解法1:

同傅里叶变换的一般形式各分量系数计算原理,对(12)式两边积分,有:

\large \int_{0}^{T}f(x)dx=\int_{0}^{T}\sum_{t=0}^{T}\left \{C_{t}^{+} \cdot e^{j\cdot w_{T}tx} +C_{t}^{-} \cdot e^{-j\cdot w_{T}tx} \right \}dx

                         \large =\sum_{t=0}^{T}\left \{C_{t}^{+} \int_{0}^{T} e^{j\cdot w_{T}tx}dx +C_{t}^{-} \cdot \int_{0}^{T}e^{-j\cdot w_{T}tx}dx \right \}

                         \large =T\cdot \left ( C_{0}^{+}+C_{0}^{-} \right )+\sum_{t=1}^{T}\left \{C_{t}^{+} \cdot\int_{1}^{T} e^{j\cdot w_{T}tx}dx +C_{t}^{-} \cdot \int_{1}^{T}e^{-j\cdot w_{T}tx}dx \right \}

                         \large =T\cdot \left ( C_{0}^{+}+C_{0}^{-} \right )+\sum_{t=1}^{T}\left \{C_{t}^{+} \cdot 0 +C_{t}^{-} \cdot 0 \right \}

                         \large =T\cdot \left ( C_{0}^{+}+C_{0}^{-} \right )

可以知道,\large C_{t}^{+},C_{t}^{-}分别是与\large t,-t有关的量,当\large t=0时,有:

                          \large C_{0}^{+}=C_{0}^{-}

故有:

\large C_{0}^{+}=C_{0}^{-}=\frac{1}{2T}\int_{0}^{T}f(x)dx,(15)

解法2:

根据傅里叶变化的一般形式的系数计算公式及指数形式的系数计算公式,可得:

\large \left.\begin{matrix} C_{0}^{+}\\ C_{0}^{-} \end{matrix}\right\}=\frac{\widetilde{A_{0}} \pm j\cdot\widetilde{B_{0}}}{2}=\frac{\frac{1}{T}\cdot\int_{0}^{T}f(x)dx \pm j\cdot0}{2}=\frac{1}{2T}\int_{0}^{T}f(x)dx,(15)

其中,傅里叶一般形式的\large \widetilde{B_{0}}可以取任意值,这里为了方便,取其值为0,此时与公式(15)相符;

 


\huge C_{t_{k}}^{+}:

解法1:

对(12)式两边同时乘以\large e^{-j\cdot w_{T}t_{k}x},k\in[1,T],k\in N^{+},有:

\large \int_{0}^{T}f(x)e^{-j\cdot w_{T}t_{k}x}dx=\int_{0}^{T}\sum_{t=0}^{T}\left \{C_{t}^{+} \cdot e^{j\cdot w_{T}tx}e^{-j\cdot w_{T}t_{k}x} +C_{t}^{-} \cdot e^{-j\cdot w_{T}tx}e^{-j\cdot w_{T}t_{k}x} \right \}dx

                           \large =\int_{0}^{T}\left C_{t_{k}}^{+} \cdot e^{j\cdot w_{T}t_{k}x} \cdot e^{-j\cdot w_{T}t_{k}x} dx

                           \large =\int_{0}^{T}\left C_{t_{k}}^{+} \cdot e^{0} dx

故有:

\large C_{t_{k}}^{+}=\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{-j\cdot w_{T}t_{k}x}dx,(16)

解法2:

\large C_{t_{k}}^{+}=\frac{\widetilde{A_{t_{k}}} - j\cdot\widetilde{B_{t_{k}}}}{2}=\frac{\frac{2}{T}\int_{0}^{T}f(x)cos(w_{T}t_{k}x)dx-j\cdot\frac{2}{T}\int_{0}^{T}f(x)sin(w_{T}t_{k}x)dx}{2}

        \large =\frac{\int_{0}^{T}f(x)\left \{ cos(w_{T}t_{k}x)-j\cdot sin(w_{T}t_{k}x) \right \}dx}{T}    

        \large =\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{-j\cdot w_{T}t_{k}x}dx,(16)

 


\huge C_{t_{k}}^{-}:

解法1:

对(12)式两边同时乘以\large e^{j\cdot w_{T}t_{k}x},k\in[1,T],k\in N^{+},有:

\large \int_{0}^{T}f(x)e^{j\cdot w_{T}t_{k}x}dx=\int_{0}^{T}\sum_{t=0}^{T}\left \{C_{t}^{+} \cdot e^{j\cdot w_{T}tx}e^{j\cdot w_{T}t_{k}x} +C_{t}^{-} \cdot e^{-j\cdot w_{T}tx}e^{j\cdot w_{T}t_{k}x} \right \}dx

                                        \large =\int_{0}^{T}\left C_{t_{k}}^{-} \cdot e^{-j\cdot w_{T}t_{k}x} \cdot e^{j\cdot w_{T}t_{k}x} dx

                                        \large =\int_{0}^{T}\left C_{t_{k}}^{-} \cdot e^{0} dx

故有:

\large C_{t_{k}}^{-}=\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{j\cdot w_{T}t_{k}x}dx,(17)

解法2:

\large C_{t_{k}}^{+}=\frac{\widetilde{A_{t_{k}}} + j\cdot\widetilde{B_{t_{k}}}}{2}=\frac{\frac{2}{T}\int_{0}^{T}f(x)cos(w_{T}t_{k}x)dx+j\cdot\frac{2}{T}\int_{0}^{T}f(x)sin(w_{T}t_{k}x)dx}{2}

        \large =\frac{\int_{0}^{T}f(x)\left \{ cos(w_{T}t_{k}x)+j\cdot sin(w_{T}t_{k}x) \right \}dx}{T}

         \large =\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{j\cdot w_{T}t_{k}x}dx,(17)

 


总结如下:

傅里叶变换一般形式:

\large f(x)=\sum_{t=0}^{T}[\widetilde{A_{t}}cos(w_{T}tx)+\widetilde{ B_{t}}sin(w_{T}tx)],t\in N

\large \left\{\begin{matrix} \widetilde{A_{0}}=\frac{1}{T}\int_{0}^{T}f(x)dx\\ \widetilde{A_{t_{k}}}=\frac{2}{T}\int_{0}^{T}f(x)cos(w_{T}t_{k}x)dx,t_{k}\in[1,T]\\\widetilde{B_{t_{k}}}=\frac{2}{T}\int_{0}^{T}f(x)sin(w_{T}t_{k}x)dx,t_{k}\in[1,T] \end{matrix}\right.,(18)

傅里叶变换指数形式:

\large f(x)=\sum_{t=0}^{T}\left \{C_{t}^{+} \cdot e^{j\cdot w_{T}tx} +C_{t}^{-} \cdot e^{-j\cdot w_{T}tx} \right \},t\in N

\large \left\{\begin{matrix} C_{0}^{+}=C_{0}^{-}=\frac{1}{2T}\int_{0}^{T}f(x)dx\\C_{t_{k}}^{+}=\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{-j\cdot w_{T}t_{k}x}dx,t_{k}\in[0,T] \\C_{t_{k}}^{-}=\frac{1}{T} \cdot \int_{0}^{T}f(x)e^{+j\cdot w_{T}t_{k}x}dx,t_{k}\in[0,T]\end{matrix}\right.,(19)

其中,\large w_{T}=\frac{2\pi}{T}.若\large f(x)表示的是离散信号,上述公式中积分符号换成累加符号即可,此时也称之为离散傅里叶变换。

 

 

 

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值