线性代数学习笔记24

本文探讨线性代数中的对称矩阵和正定矩阵。对称矩阵的特征值皆为实数,其特征向量垂直;正定矩阵则更进一步,特征值全为正且满足特定条件,如所有主元、子行列式为正。这些性质在实数和复数矩阵中都有重要应用。
摘要由CSDN通过智能技术生成

这里第二十六课-对称矩阵及正定性

引言

分析方阵,特征值和特征向量是两个很重要的部分,例如马尔可夫矩阵矩阵就是具备特征值有一个为1的特点,其他的绝对值小于1。对于对称矩阵也具备一些十分特殊的性质

对称矩阵

对于对称矩阵,定义即为 A T = A A^T = A AT=A。特征值和特征向量满足
1、特征值都是实数
2、特征向量是垂直的

当然这里对于性质二就不证明了(人生苦短,……),以2为基础,我们来证明1
A = S 对 角 矩 阵 S − A = S 对角矩阵 S^- A=SS由于这里我们知道对称矩阵的特征向量之间是垂直的,所以有 A = Q 对 角 矩 阵 Q − = Q 对 角 矩 阵 Q T A = Q 对角矩阵 Q^- = Q对角矩阵Q^T A=QQ=QQT

A = Q 对 角 矩 阵 Q T 主 轴 定 理 A = Q对角矩阵Q^T 主轴定理 A=QQT

证明:
A X = λ X = > A ˉ X ˉ = λ ˉ X ˉ AX = \lambda X=>\bar A \bar X = \bar \lambda \bar X AX=λX=>AˉXˉ=λˉXˉ
由于A 这里是实数的矩阵,有
A ˉ X ˉ = λ ˉ X ˉ = > A X ˉ = λ ˉ X ˉ \bar A \bar X = \bar \lambda \bar X =>A \bar X = \bar \lambda \bar X AˉXˉ=λˉXˉ=>A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值