线性代数学习笔记14

本文介绍了线性代数中的子空间投影,详细阐述了投影矩阵P的性质,分析了在高维情况下的投影情况,并讨论了最小二乘法在无解时求解近似解的过程。还证明了当矩阵A的各列线性相关时,ATA可逆,意味着存在唯一解。
摘要由CSDN通过智能技术生成

子空间投影引入-向量的投影

我们首先以R2维空间中为例,一个向量投影b到另外一个向量a,含义为: 在a所在的空间中,找到离b最近的点,即垂直点,所以距离 我们也可以认为是b 距离 b到a 的投影之间的误差,对于投影 到的向量p = xa,由于垂直,我们有
a T e = 0 a^Te=0 aTe=0

a T ( b − p ) = 0 a^T(b-p)=0 aT(bp)=0

a T ( b − x a ) = 0 a^T(b-xa)=0 aT(bxa)=0

x a T a = a T b xa^Ta = a^Tb xaTa=aTb

x = a T b / a T a x = a^Tb/a^Ta x=aTb/aTa

所 以 有 投 影 的 向 量 p = a x = a × ( a T b / a T a ) 所以有 投影的向量 p = ax= a \times (a^Tb/a^Ta) p=ax=a×(aTb/aTa)
我们向量e 来记录这个距离值,易知 e与 a空间垂直,成e为误差

这里我们引入投影矩阵的概念,即一个投影矩阵作用到一个向量,结果为投影的向量
由于 p = ( a a T / a T a ) b p = (a a^T/a^Ta) b p=(aaT/aTa)b
所以有投影矩阵为
P = ( a a T / a T a ) , 有 p = P b P = (a a^T/a^Ta),有 p = Pb P=(aaT/aTa),p=Pb

分析投影矩阵P

1、由 P = ( a a T / a T a ) P = (a a^T/a^Ta) P=(aaT/aTa)由于 a T a a^Ta aTa 是一个数值,在一维情况下。分析

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值