IEEE 754的浮点数

0引言

    IEEE(Institute of Electrical and Electronics Engineers, 电子电气工程师协会)在I985年制定的IEEE 754(IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985 )二进制浮点运算规范,是浮点运算部件事实上的工业标准。许多计算机用户有机会在Intel x86和SPARC 或Power PC机之间交换二进制数据,所以对照Intel x86和SPARC结构计算机的数据表示及相关程序设计语言,讨论IEEE 754浮点数存储格式的细节是有意义的。
本文对浮点数、IEEE 754浮点数的表示 方法、规格化处理等进行了分析,重点分析、比较了Intel x86和SPARC结构计算机IEEE 754浮点数的存储格式。

1  浮点数

    在计算机系统的 发展过程中,曾经提出过多种方法表示实数,但是到 目前为止使用最广泛的是浮点表示法。相对于定点数而言,浮点数利用指数使小数点的位置可以根据需要而上下浮动,从而可以灵活地表达更大范围的实数。
    浮点数表示法利用 科学计数法来表达实数。通常,将浮点数表示为 ± d.dd d ×β e,其中d.dd… d 称为有效数字(significand),它具有 p 个数字(称p位有效数字精度),β为基数(Base),e为指数(Exponent),±表示实数的正负 [1,2]。更精确地,± d 0.d d d p -1 × β e, 表示以下数
 ±(d 0+d 1β -1+… +d p -1β -(p-1))β e,(0≤d i<β)。
    对实数的浮点表示仅作如上的规定是不够的,因为同一实数的浮点表示还不是唯一的。例如,1.0×10 2 ,0.1 ×10 3 ,和0.01 ×10 4 都可以表示100.0。为了达到表示单一性的目的,有必要对其作进一步的规范。规定有效数字的最高位(即前导有效位)必须非零,即0<d 0<β。符合该标准的数称为规格化数(Normalized Numbers),否则称为非规格化数(Denormalized Numbers)。  

2  IEEE 754浮点数与其浮点格式

2.1  实数的IEEE 754表示形式

    一个实数V在IEEE 754标准中可以用V=(-1) s×M×2 E 的形式表示 [3,4],说明如下:
    (1)符号s(sign)决定实数是正数(s=0)还是负数(s=1),对数值0的符号位特殊处理。
    (2)有效数字M(significand)是二进制小数,M的取值范围在1≤M<2或0≤M<1。
    (3)指数E(exponent)是2的幂,它的作用是对浮点数加权。

2.2  浮点格式

    浮点格式是一种数据结构,它规定了构成浮点数的各个字段,这些字段的布局,及其算术解释 [2]。IEEE 754浮点数的数据位被划分为3个字段,对以上参数值进行编码:
    (1)一个单独的符号位s直接编码符号s。
    (2)k位的偏置指数e(e=e k -1 e 1e 0)编码指数E,移码表示。
    (3)n位的小数f(fraction)(f=f n -1…f 1f 0)编码有效数字M,原码表示。

2.3  浮点数的分类

    根据偏置指数e的值,被编码的浮点数可分成三种类型。
    (1)规格化数
    当有效数字M在范围1≤M<2中且指数e的位模式e k -1 e 1e 0既不全是0也不全是1时,浮点格式所表示的数都属于规格化数。这种情况中小数f(0≤f<1 ) 的二进制表示为0. f n -1…f 1f 0。有效数字M=1+f,即M=1. f n -1…f 1f 0 (其中小数点左侧的数值位称为前导有效位) 。我们总是能调整指数E,使得有效数字M在范围1≤M<2中,这样有效数字的前导有效位总是1,因此该位不需显示表示出来,只需通过指数隐式给出。
需要特别指出的是指数E要加上一个偏置值Bias,转换成无符号的偏置指数e,也就是说指数E要以移码的形式在存放计算机中。且e、E和Bias三者的对应关系为e=E+Bias,其中Bias=2 k -1-1。
    (2)非规格化数
    当指数e的位模式e k -1 e 1e 0全为零(即e=0)时,浮点格式所表示的数是非规格化数。这种情况下,E=1-Bais,有效数字M=f=0. f n -1…f 1f 0 ,有效数字的前导有效位为0。
非规格化数的引入有两个目的。其一是它提供了一种表示数值0的方法,其二是它可用来表示那些非常接近于0.0的数。
    (3)特殊数
    当指数e的位模式e k -1 e 1e 0全为1时,小数f的位模式f n -1…f 1f 0全为0(即f=0)时,该浮点格式所表示的值表示无穷,s=0 时是+∞,s=1时是-∞。
当指数e的位模式e k -1 e 1e 0全为1时,小数f的位模式f n -1…f 1f 0不为0(f n -1、…、f 1、f 0、至少有一个非零即f≠0)时,该浮点格式所表示的值被称为NaN(Not a Number)。比如当计算 或∞-∞时用作返回值,或者用于表示未初始化的数据。

3  IEEE 754浮点存储格式

    与浮点格式对应,浮点存储格式规定了浮点格式在存储器中如何存放。IEEE标准定义了这些浮点存储格式,但具体选择哪种存储格式由实现工具(程序设计语言)决定。
汇编语言软件有时取决于所使用的存储格式,但更高级的语言通常仅处理浮点数据类型的语言概念。这些浮点数据类型在不同高级语言中有不同的名字,相应的IEEE格式如表1。
表1   IEEE 格式和语言类型
IEEE精度
C,C++
FORTRAN
单精度
float
REAL or REAL*4
双精度
double
DOUBLE PRECISION or REAL*8
扩展双精度
long double
REAL*16 [仅适用于SPARC和PowerPC]
    IEEE 754标准准确地定义了单精度和双精度浮点格式,并为这两种基本格式的分别定义了扩展格式,表1里扩展双精度格式是IEEE标准定义的扩展双精度类中的一种。
下面详细讨论在Intel x86和SPARC平台上使用的三种IEEE浮点存储格式。

3.1 单精度格式

    IEEE单精度浮点格式共32位,包含三个构成字段:23位小数f,8位偏置指数e,1位符号s。将这些字段连续存放在一个32位字里,并对其进行编码。其中0:22位包含23位的小数f; 23:30位包含8位指数e;第31位包含符号s。如图1所示。
图1   单精度存储格式
    一般地,32位字的第0位存放小数f的最低有效位LSB(the least significant bit),第22位存放小数f的最高有效位MSB(the most significant bit);第23位存放偏置指数的最低有效位LSB,第30位存放偏置指数的最高有效位MSB;最高位,第31位存放符号s。

3.2  双精度格式

    IEEE双精度浮点格式共64位,占2个连续32位字,包含三个构成字段:52位的小数f,11位的偏置指数e,1位的符号位s。将这2个连续的32位字整体作为一个64位的字,进行重新编号。其中0:51位包含52位的小数f;52:62位包含11位的偏置指数e;而最高位,第63位包含符号位s。如图2所示。

图 2 双精度浮点数的存储格式
    f[31:0]存放小数f的低32位,其中第0位存放整个小数f的最低有效位LSB,第31位存放小数f的低32位的最高有效位MSB。
    在另外的32位的字里,第0 到19位,即f[51:32],存放小数f的最高的20位,其中第0位存放这20位最高有效数中的最低有效位LSB,第19位存放整个小数f的最高有效位MSB。第20到30位,即e[52:62],存放11位的偏置指数e,其中第20位存放偏置指数的最低有效位LSB,第30位存放最高有效位MSB。最高位,第31位存放符号位s。
    在Intel x86结构 计算机中,数据存放采用小端法(little endian),故较低地址的32位的字中存放小数f的f[31:0]位。而在在SPARC结构计算机中,因其数据存放采用大端法(big endian),故较高地址的32位字中存放小数f的f[31:0]位。

3.3  扩展双精度格式

    ⑴ 扩展双精度格式(SPARC 结构计算机)
    该4倍精度浮点环境符合IEEE关于扩展双精度格式的定义。该浮点环境的4倍精度浮点格式共128位,占4个连续32位字,包含3个构成字段:112位的小数f,15位的偏置指数e,和1位的符号s。将这4个连续的32位字整体作为一个128位的字,进行重新编号。其中0:110位包含小数f;112:126位包含偏置指数e;第127位包含符号位s。如图3所示。
在SPARC结构计算机中,地址最高的32位字存放小数的32位最低有效位,即f[31:0];但是在PowerPC结构计算机中,却是地址最低的32位字存放这些位。
紧邻的两个32位字(在SPARC机中向下计算,在PowerPC机中向上计算)分别存放f[63:32]和f[95:64]。
    最后一个字的第0到15位存放小数的最高16位,即f[111:96]。其中第0位存放该16位的最低有效位,第15位存放整个小数f的最高有效位。第16到30位存放15位的偏置指数e,其中第16位存放偏置指数的最低有效位,第30位存放它的最高有效位。最高位,第31位存放符号s。
图 3   扩展双精度存储格式 (SPARC 结构计算机)
    ⑵ 扩展双精度格式(Intel x86结构计算机)
    该浮点环境双精度扩展格式符合IEEE双精度扩展格式的定义。该浮点环境的扩展双精度格式共80位,占3个连续32位字,包含四个构成字段:63位的小数f,1位显式前导有效位(explicit leading significand bit)j,15位偏置指数e,和1位符号位s。将这3个连续的32位字整体作为一个96位的字,进行重新编号。其中0:63包含63位的小数f,第63位包含前导有效位j,64:78位包含15位的偏置指数e,最高位第79位包含符号位s。
    在Intel结构系计算机中,这些字段依次存放在十个连续的字节中。但是,由于 UNIX  System V Application Binary Interface Intel 386 Processor Supplement (Intel ABI) 要求双精度扩展参数,从而占用堆栈中3个相连地址的32位字,其中最高一个字的高16位未被使用,如图4所示。

图4  扩展双精度存储格式(Intel x86结构计算机)

    地址最低的32位字存放小数f的低32位,即f[31:0]。其中第0位存放整个小数f的最低有效位LSB 第31位存放小数低32位的最高有效位MSB。
    地址居中的32位字,第0到30位存放小数f的31位最高位,即f[62:32]。其中第0位存放31位最高小数位的最低有效位LSB,第30位存放整个小数的最高有效位,地址居中的32位字的最高位第31位存放显式的前导有效位j。
    地址最高32位字里,第0到14位存放15位的偏置指数e,第0位存放偏置指数的最低有效位LSB,第14位存放最高有效位MSB,第15位存放符号位s。虽然地址最高的32位字的高16位在Intel x86结构系列机种未被使用,但他们对符合Intel ABI的规定来说,是必需的。

总结

    以上讨论了Intel x86、Power PC和SPARC平台上使用的三种IEEE 754浮点数格式及其存储格式,下面对浮点数的相关参数进行总结,具体见表2。

表2   IEEE 浮点格式参数总结
参数
浮点格式
单精度
双精度
扩展双精度(Intel x86)
扩展双精度(SPARC)
小数f宽度n
23
52
63
112
前导有效位
隐含
隐含
显式
隐含
有效数字M精度p
24
53
64
113
偏置指数宽度k
8
11
15
15
偏置值Bias
+127
+1023
+16383
+16383
符号位宽度
1
1
1
1
存储格式宽度
32
64
80
128

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值