
SPC
文章平均质量分 86
SPC(Statistical Process Control,统计过程控制)是一种基于统计学的方法,用于监控、控制和改进过程,以确保其稳定性和一致性。通过收集和分析过程数据,识别变异来源,区分正常变异(随机变异)和异常变异(可控变异),从而优化过程性能。它广泛应用于制造业、服务业等领域的质量管理。
zhxup606
252439060
展开
-
SPC中P控制图如果每组数量不同该如何计算
如何算 \(\sigma_p\):使用公式 \(\sigma_{p_i} = \sqrt{\frac{\bar{p}(1 - \bar{p})}{n_i}}\),其中 \(\bar{p}\) 是总体平均不良率,\( n_i \) 是每组样本量。如果样本量相同,则 \(\sigma_{p_i}\) 相同。- \(\sigma_{p_i}\) 与 \(\sqrt{\frac{1}{n_i}}\) 成正比,样本量 \( n_i \) 越大,\(\sigma_{p_i}\) 越小。原创 2025-05-08 07:00:00 · 16 阅读 · 0 评论 -
子组的变量控制图,Xbar-S控制图介绍,公式,C#实现
其中,\( \bar{X}_i \) 是第 \( i \) 个子组的均值,\( X_{ij} \) 是第 \( i \) 个子组的第 \( j \) 个观测值,\( n \) 是子组样本量。- 如果样本量 \( n \) 较大,\( c_4 \approx 1 \),此时 \( \bar{S} \approx \sigma \)。4. 常数表:包含 \( A_3 \)、\( B_3 \)、\( B_4 \) 和 \( c_4 \),为简化仅列出部分样本量对应的值。代码基于子组数据输入。原创 2025-05-01 09:05:09 · 18 阅读 · 0 评论 -
稀有事件控制图, T控制图,详细中文介绍,和别的控制图的区别
传统控制图(如p图、np图、c图、u图)通常假设数据符合正态分布或泊松分布,但在稀有事件场景下,事件之间的时间间隔往往服从指数分布或几何分布,传统控制图可能失效。| 控制图类型 | 监控对象 | 分布假设 | 适用场景 | 与T控制图的区别 || T控制图 | 事件之间的时间间隔 | 指数分布 | 稀有事件(如故障、事故) | 专门针对低频事件,监控时间间隔而非事件计数或比例。原创 2025-05-01 09:02:52 · 17 阅读 · 0 评论 -
稀有事件控制图, G控制图,详细中文介绍,和别的控制图的区别
区别:p图和np图对高缺陷率过程更敏感,而G控制图对稀有事件更有效,特别当 \( p \) 非常小时,p图可能显示“全在控制范围内”,而G控制图能检测异常。- 标准差 \( \sigma = \sqrt{\frac{1}{p} \cdot \left(\frac{1}{p} - 1\right)} \)。- 其中 \( G2 = \frac{1}{p} \),\( z \) 是标准正态分布的分位数(通常取 \( z = 3 \) 表示3σ控制限)。实际应用中,应从过程数据中收集。原创 2025-05-01 09:00:56 · 20 阅读 · 0 评论 -
属性控制图与P控制图诊断介绍
属性控制图是统计过程控制(SPC)中用于监控离散数据的工具,适用于不符合(次品)或缺陷计数的情况。常见的属性控制图包括P图、NP图、C图和U图,其中P控制图(比例控制图)用于监控不合格品率(即样本中不合格品占总样本的比例)。以下是一个简单的C#代码示例,用于计算P控制图的中心线和控制限,并输出结果。1. 控制限外点:点落在上控制限(UCL)或下控制限(LCL)之外,表明过程失控。- 遍历每个样本,计算比例、标准差、上控制限(UCL)和下控制限(LCL)。P控制图基于二项分布,计算不合格品比例的控制限。原创 2025-05-01 08:59:29 · 31 阅读 · 0 评论 -
属性控制图与P控制图介绍
数据准备:确保样本大小足够大(通常 \(n_i \cdot \bar{p} \geq 5\) 且 \(n_i \cdot (1 - \bar{p}) \geq 5\)),以满足正态近似。- 控制限基于二项分布的正态近似,标准差为 \(\sqrt{\frac{\bar{p}(1 - \bar{p})}{n_i}}\)。- 若样本大小 \(n_i\) 变化,控制限会随 \(n_i\) 变化,生成变宽或变窄的控制限。- \(p_i\):第 \(i\) 个样本的不合格比例。原创 2025-05-01 08:57:25 · 9 阅读 · 0 评论 -
属性控制图,U控制图介绍,公式,C#实现
根据数据类型,属性控制图分为几种类型,包括p图(不合格率)、np图(不合格品数)、c图(单位缺陷数)和u图(单位平均缺陷数)。- `Sample`类存储每个样本的数据,包括缺陷数 (\(c_i\))、样本大小 (\(n_i\))、单位缺陷率 (\(u_i\))、上控制限 (UCL) 和下控制限 (LCL)。- 准备两组数据:缺陷数列表 (\(c_i\)) 和样本大小列表 (\(n_i\))。- \( n_i \):第 \(i\) 个样本的检验单位数(如面积、行数)。原创 2025-05-01 08:55:50 · 9 阅读 · 0 评论 -
属性控制图,NP控制图介绍
NP控制图是一种统计过程控制工具,用于监控生产过程中不合格品的数量是否稳定。如果 \( LCL < 0 \),则取 \( LCL = 0 \),因为不合格品数量不能为负。- \( \sqrt{n \cdot p \cdot (1 - p)} \) 是二项分布的标准差。- 设置样本大小 \( n = 100 \),不合格率 \( p = 0.05 \)。以下是一个C#程序,用于计算NP控制图的中心线和控制限,并生成简单的控制图数据。- 样本大小固定:NP控制图要求每次抽样的单位数量 \( n \) 相同。原创 2025-05-01 08:53:38 · 14 阅读 · 0 评论 -
属性控制图,Laney U控制图介绍,公式,C#实现
这些图基于二项分布(P、NP图)或泊松分布(C、U图),用于区分常见原因变异和特殊原因变异。然而,当数据存在过度离散(overdispersion)或欠离散(underdispersion)时,传统控制图的控制限可能不准确,导致误判。- 在使用Laney U'图前,建议进行U图诊断(U Chart Diagnostic),确认是否存在过度/欠离散。程序假设输入为缺陷数和子组大小的数组。- \(\sigma_z = 1\):数据离散程度与泊松分布一致,Laney U'图等同于传统U图。原创 2025-05-01 08:51:38 · 11 阅读 · 0 评论 -
属性控制图,C控制图介绍,公式,C#实现
属性控制图是统计过程控制(SPC)中用于监控离散数据的工具,适用于质量特性无法用连续数值表示的情况(如缺陷数、不合格品数)。- 控制限基于泊松分布的标准差 \( \sqrt{\bar{c}} \),加上/减去3倍标准差(对应99.7%的置信区间)。如果 \( LCL < 0 \),则令 \( LCL = 0 \),因为缺陷数不可能为负。- \( \bar{c} \) 是所有样本缺陷数的平均值,代表过程的平均缺陷水平。- 绘制 \( c_i \)(每个样本的缺陷数)与控制限,判断过程是否稳定。原创 2025-05-01 08:49:11 · 13 阅读 · 0 评论 -
属性控制图 Laney P‘ Control Chart Clear Explanation and C# Implementation
Laney P'控制图:P控制图的改进版,适合样本大小变化大或数据波动异常(过分散或欠分散)的情况。- 例:500个产品中65个不合格,\(\bar{p} = 65 / 500 = 0.13\)。- \(\bar{p}(1 - \bar{p}) / n_i\):二项分布的预期方差。- \(\frac{n_i}{\sum n_i}\):样本大小的权重。- \(LCL_i\):第\(i\)个样本的下控制限(若为负,取0)- 为每个样本计算控制限(\(UCL_i\)和\(LCL_i\))原创 2025-05-01 08:40:51 · 6 阅读 · 0 评论 -
时间加权控制图 - EWMA控制图详细介绍
\( \lambda \):加权参数,\( 0 < \lambda \leq 1 \),通常取值为 0.05 到 0.3。较小的 \( \lambda \) 使控制图对小偏移更敏感。其中 \( \bar{R} \) 是移动极差的平均值,\( d_2 \) 是与子组大小相关的常数(例如,子组大小 \( n=2 \) 时,\( d_2 = 1.128 \))。2. 构造函数:初始化参数(观测值、\( \lambda \)、\( \mu_0 \)、\( \sigma \)、\( L \))。原创 2025-05-01 08:33:54 · 20 阅读 · 0 评论 -
时间加强控制图与移动平均详细介绍
移动平均通过对固定窗口大小的数据点取平均值,生成一个平滑的数据序列,用于减少随机噪声的影响,突出长期趋势。- 加权移动平均(Weighted Moving Average, WMA):对窗口内的数据点赋予不同权重,通常近期数据权重更高。常用窗口大小为 3、5 或 7。以下是简单移动平均(SMA)和指数移动平均(EMA)的 C# 实现,包括控制图的控制限计算。- 从第 ( k ) 个数据点开始,计算前 ( k ) 个数据的平均值。其中,( t \geq k ),表示至少需要 ( k ) 个数据点才能计算。原创 2025-05-01 08:28:19 · 9 阅读 · 0 评论 -
时间加强控制图,累计和控制图详细介绍,公式,计算 UCL,LCL,CL, sigma,C#实现
\(k\):参考值(通常取为检测偏移量的一半,例如 \(k = \frac{\delta \sigma}{2}\),\(\delta\)是希望检测的偏移量,\(\sigma\)是过程标准差)。- 示例中假设目标均值 \(\mu_0 = 10.0\),标准差 \(\sigma = 0.5\),参考值 \(k = 0.25\)(检测1σ偏移),控制限常数 \(h = 4\)。例如,若希望检测1个标准差的偏移(\(\delta = 1\)),则 \(k = 0.5\sigma\)。原创 2025-05-01 08:25:37 · 22 阅读 · 0 评论 -
多变量控制图:Hotelling T² 和广义方差介绍、公式及 C# 实现
Hotelling T² 控制图是用于多变量质量控制的统计工具,适用于监控多个相关变量的总体稳定性。它基于 Hotelling T² 统计量,检测样本均值向量是否偏离目标均值向量,广泛应用于工业、制造和质量管理领域。原创 2025-05-01 08:18:45 · 18 阅读 · 0 评论 -
多变量EWMA控制图
其中 \( \lambda \) 是平滑参数(通常 0.05–0.25),\( \mathbf{x}_t \) 是观测向量,\( \mathbf{\mu}_0 \) 是目标均值,初始 \( \mathbf{z}_0 = \mathbf{0} \)。此外,若变量间相关性变化,需动态更新协方差矩阵。其中 \( \mathbf{\Sigma}_z = \frac{\lambda}{2 - \lambda} \mathbf{\Sigma} \),\( \mathbf{\Sigma} \) 是过程协方差矩阵。原创 2025-05-01 08:15:37 · 12 阅读 · 0 评论 -
minitaba 选项中的参数,估计,计划类型,阶段,box-cox,显示,存储都是什么意思
参数定义 ( \lambda )、( \mu_0 )、( L ),控制图的灵敏度和基准。估计处理未知均值和标准差的计算。计划/类型指定子组和控制限类型。阶段支持分段分析。Box-Cox处理非正态数据。显示和存储定制输出和数据保存。通过合理设置这些选项,并结合推荐的资料(如 Montgomery 的教材和 Minitab 官方文档),用户可以有效构建和分析 EWMA 控制图,提升过程监控能力。建议初学者从 Minitab 的帮助文档和简单示例入手,逐步掌握参数调整和高级功能。原创 2025-04-30 16:35:39 · 14 阅读 · 0 评论 -
Weibull 分布拟合代码或具体案例分析
由于 C# 原生库不直接支持复杂的分布拟合,我们将使用简化的数值方法实现 MLE,并提供使用 Math.NET Numerics 的扩展版本(推荐用于生产环境)。假设一家公司生产灯泡,收集了 50 个灯泡的寿命数据(单位:小时),数据呈右偏分布,疑似服从 Weibull 分布。1. 使用 Weibull 分布拟合数据,估计形状参数 (\(\beta\)) 和尺度参数 (\(\lambda\)).- \(\beta > 1\),表示寿命数据呈钟形分布,失效率随时间增加(老化失效型),符合灯泡逐渐磨损的特性。原创 2025-04-30 11:47:48 · 17 阅读 · 0 评论 -
Weibull 分布
决定了分布的“宽度”或特征时间,表示 63.2% 的数据小于 \(\lambda\)(因为 \( P(X \leq \lambda) = 1 - e^{-1} \approx 0.632 \))。- 注意:实际应用需通过数据拟合 \(\beta\) 和 \(\lambda\)(可使用 Math.NET Numerics 的分布拟合功能)。2. 分位数计算:使用拟合参数计算分位数(如 \( Q(0.00135) \)、\( Q(0.99865) \)、\( Q(0.5) \))。原创 2025-04-30 11:45:17 · 20 阅读 · 0 评论 -
Minitab 质量工具 - 能力分析详解
类型数据类型分布假设主要指标应用场景正态连续正态分布稳定过程,数据正态(如尺寸、重量)组间/组内连续正态分布批量生产,存在子组间变异非正态连续非正态(如 Weibull)Pp, Ppk非正态数据(如寿命、时间)多变量(正态)连续多变量正态多个正态变量,需考虑相关性多变量(非正态)连续非正态分布多个非正态变量,需考虑相关性二项属性(离散)二项分布合格/不合格比例(如缺陷率)Poisson属性(离散)Poisson 分布DPU, Ppk。原创 2025-04-30 10:20:30 · 37 阅读 · 0 评论 -
属性控制图--U控制图诊断介绍、公式、C#实现
U控制图是其中一种,专门用于**单位缺陷数**的控制,即每单位样本中的平均缺陷数,适用于样本大小可变的情况(例如,每批产品的检验单位数不同)。Console.WriteLine($"样本 {i + 1}: u={chart.UValues[i]:F4}, UCL={chart.UCL[i]:F4}, LCL={chart.LCL[i]:F4}");- 输出:中心线(`CenterLine`)、每个样本的单位缺陷数(`UValues`)、上控制限(`UCL`)、下控制限(`LCL`)。} // 单位缺陷数。原创 2025-04-27 22:42:48 · 27 阅读 · 0 评论 -
属性控制图与Laney P‘控制图介绍、公式及C#实现
Laney P'控制图由David B. Laney提出,是P控制图的改进,专门解决传统P控制图在样本大小变化较大或数据分散性异常时的不足。传统P控制图假设数据符合二项分布,但当数据存在过分散(变异大于预期)或欠分散(变异小于预期)时,控制限可能过窄或过宽,导致误判。Laney P'控制图引入了变异校正因子(σ_z),通过调整控制限来更准确地反映过程变异。原创 2025-04-27 22:31:13 · 19 阅读 · 0 评论 -
子组的变量控制图之区域控制图
区域控制图是变量控制图的扩展,通过在控制图上划分区域(Zone)来增强对过程变异的分析。其中,\(d_2\)是基于子组大小n的常数(例如,n=5时,\(d_2=2.326\))。- Zone A:\(X̄̄ \pm 2σ\) 到 \(X̄̄ \pm 3σ\)- Zone B:\(X̄̄ \pm 1σ\) 到 \(X̄̄ \pm 2σ\)- X̄-S 图(均值-标准差图):监控子组均值(X̄)和子组标准差(S)。- X̄-R 图(均值-极差图):监控子组均值(X̄)和子组极差(R)。原创 2025-04-27 16:36:27 · 20 阅读 · 0 评论 -
X-bar 和 R 图(均值与极差控制图)介绍及 C# 实现
X-bar 和 R 图是统计过程控制(SPC)中常用的控制图,用于监控过程的均值(X-bar 图)和变异性(R 图,极差图)。它们通常用于连续数据的质量控制,帮助识别过程是否处于统计控制状态。原创 2025-04-27 16:10:31 · 40 阅读 · 0 评论 -
统计过程控制(SPC)
以下是对所有常见控制图的详细说明,包括名称、功能介绍、实现的具体目标以及相关细节。- mR图:中心线为移动极差的平均值(mR-bar),UCL = D4*mR-bar,LCL = D3*mR-bar(d2、D3、D4为常数)。- R图:中心线为样本极差的平均值(R-bar),UCL = D4*R-bar,LCL = D3*R-bar(A2、D3、D4为控制图常数)。- X-bar图:中心线为样本均值的平均值(X-double-bar),UCL/LCL = X-double-bar ± A2*R-bar。原创 2025-04-27 15:59:08 · 39 阅读 · 0 评论 -
单值的变量控制图 I-MR(R)介绍及C#实现
单值-移动极差控制图(I-MR Chart,Individual-Moving Range Chart)是一种用于监控过程稳定性的统计过程控制(SPC)工具,适用于单个观测值的数据(即每次只收集一个数据点)。- \(\overline{MR}\):移动极差均值,\(\overline{MR} = \frac{\sum MR_i}{n-1}\)- 计算单值均值(\(\bar{X}\))和移动极差均值(\(\overline{MR}\))。- `CalculateMeans` 方法计算单值均值和移动极差均值。原创 2025-04-27 17:30:01 · 340 阅读 · 0 评论 -
单值的变量控制图 Z-MR(Z) 功能介绍,C#实现
4. MR 的 Z 值计算:对每个 MR 值,计算其标准化值 \( Z_{MR_i} = \frac{MR_i - \bar{MR}}{\sigma_{MR}} \),其中 \( \bar{MR} \) 是 MR 的均值,\( \sigma_{MR} = \frac{\bar{MR}}{1.128} \),1.128 是 MR 的无偏估计常数。1. 输入:需要一组单值数据 \( X_i \),以及过程均值 \( \bar{X} \) 和标准差 \( \sigma \)。1. 计算 Z 值和 MR(Z)原创 2025-04-27 17:36:25 · 224 阅读 · 0 评论 -
单值的变量控制图单值介绍及C#实现公式
\(E_2 = \frac{3}{d_2}\),其中 \(d_2\) 是基于样本大小的常数。- \(E_2\) 为常数,与样本大小有关,对于单值控制图(样本大小 \(n=2\)),\(E_2 = \frac{3}{d_2} \approx 2.66\)(\(d_2 \approx 1.128\))。- \(\overline{MR}\) 为移动范围均值:\(\overline{MR} = \frac{\sum MR_i}{n-1}\),\(MR_i = |X_i - X_{i-1}|\)。原创 2025-04-27 19:19:00 · 224 阅读 · 0 评论 -
单值的变量控制图移动极值介绍及C#实现公式
其中 \(d_2\) 是与样本大小相关的常数,对于单值控制图(样本量为2,即连续两个观测值),\(d_2 \approx 1.128\)。3. 常数 \(d_2\)、\(D_3\)、\(D_4\) 针对样本量为2的情况,适用于单值控制图。- 过程标准差(\(\hat{\sigma}\)):通过\(\bar{MR}/d_2\)估算。- 移动极值控制图的控制限:基于\(\bar{MR}\)和常数\(D_3\)、\(D_4\)。- 移动极值控制图:以连续观测值之间的差的绝对值绘制,用于监控过程变异的变化。原创 2025-04-27 19:22:27 · 79 阅读 · 0 评论