Weibull 分布拟合代码或具体案例分析

以下是关于 Weibull 分布拟合的深入 C# 代码实现,以及一个具体案例分析,展示如何在非正态能力分析中应用 Weibull 分布。代码使用最大似然估计(MLE)拟合 Weibull 分布参数,并计算能力指数(Pp 和 Ppk)。为了便于理解,案例分析将基于一个实际场景(如产品寿命数据),并提供完整的代码和结果解释。

由于 C# 原生库不直接支持复杂的分布拟合,我们将使用简化的数值方法实现 MLE,并提供使用 Math.NET Numerics 的扩展版本(推荐用于生产环境)。代码包括参数估计、分位数计算、能力指数计算和缺陷率分析。

---

 案例分析:产品寿命数据的能力分析

 场景描述
假设一家公司生产灯泡,收集了 50 个灯泡的寿命数据(单位:小时),数据呈右偏分布,疑似服从 Weibull 分布。规格要求灯泡寿命在 800 小时(下限,LSL)到 2000 小时(上限,USL)之间。我们需要:
1. 使用 Weibull 分布拟合数据,估计形状参数 (\(\beta\)) 和尺度参数 (\(\lambda\)).
2. 计算过程能力指数(Pp 和 Ppk)。
3. 估计超出规格的缺陷率(PPM&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhxup606

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值