用YOLOv2训练自己的数据集

本文档详细介绍了在Ubuntu16.04上使用YOLOv2进行深度学习目标检测的步骤,包括环境配置、YOLO初始化、测试预训练模型以及训练和测试自定义数据集的方法。重点讨论了数据集的准备、配置文件的修改以及训练过程。

一. 系统初始环境

系统:Ubuntu16.04: ubuntu-16.04-desktop-amd64.iso

cuda安装文件: cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb.44-1_amd64-deb,下载链接点击, linux-x86架构-ubuntu-16.04-deb(local)

cudnn安装文件: cudnn-8.0-linux-x64-v5.0-ga.solitairetheme8,下载链接点击, 适用cuda8.0有5.1和5.0版,这里用5.0版,区别应该不大

caffe源代码: github链接 ,或者运行git clone https://github.com/BVLC/caffe.git

安装过程点击这里

二. 初始化YOLO(v2版本)

  1. git clone
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值