栓奶牛——二分解法

栓奶牛——二分

题目描述:
有n头奶牛,有k个木桩,每个木桩有一个位置,一个木桩上只能拴一头奶牛。由于奶牛好斗,所以在拴奶牛的时候要求距离最近的奶牛的距离尽可能大。

例如n=4,k=6,木桩的位置为0,3,4,7,8,9(如最下面的图)

此时,有许多拴牛方案,例如
0,3,4,9 此时最近距离为1(3,4之间)
0,3,7,9 此时最近距离为2

输入
n,k,p1三个整数(0≤p1≤100),其中p1为第1个木桩的位置,其他木桩pi(i≥2)的位置由下面公式算出:p[i]= p[i-1]+((p[i-1]2357+137) mod 10)+1

输出
一个整数,即奶牛最近距离的最大值。

样例输入
25 70 99

样例输出
12

数据范围限制
2≤n≤100,n≤k≤100

二分算法,找到最好的mid即可

要知道,奶牛是站得越开越好,即越向右越好。

上代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,k,p1[105],mod,ans,r,l=1;
int S(int o){
	int a=1,ans2,sum=0,b;
	while(a<k){
		b=a+1;
		while(b<=k&&p1[b]-p1[a]<o){
			b++;
			ans2=a; 
		}
		sum++;
		a=b;
	}
	if(p1[b]-p1[ans2]<o)
		sum--;
	if(sum+1>=n) return 1;
	else return 0;
}
int main(){
	freopen("snn.in","r",stdin);
	freopen("snn.out","w",stdout);
	scanf("%d%d%d",&n,&k,&p1[1]);
	if(n>k){
		printf("0");
		return 0;
	}
	for(int i=1;i<k;i++){
		p1[i+1]= p1[i]+((p1[i]*2357+137) % 10)+1;
	}
	r=p1[k]-p1[1];
	while(l<=r){
//		cout<<l<<' '<<r<<endl;
		int mid=(r+l)/2;
		if(S(mid)==1){
			l=mid+1;
			ans=mid;
		}

写博不易,请发现问题的大佬提出。

代码保证正确,请留赞再走。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值