给你的头像+1 的opencv实现

1. 前言

题目是牛客网的, 链接如下:
https://www.nowcoder.com/discuss/19598?type=0&order=0&pos=4&page=1
觉得这个蛮有意思的, 于是顺手用opencv 实现了一下

2. 实现

2.1 效果

这里写图片描述

2.2 字符添加位置的说明

这里面感觉唯一的一个需要推敲的一个点, 应该就是实现字符的居中放置了, 牛客网上好多同学采用的是人机交互的方式, 手工放置这个数据, 感觉比较费劲。
我们这里通过 getTextSize 获取字符串文本的宽度和高度信息, 通过计算得到其在图像中的相应位置, 从而实现数字的居中放置。

3. 实现代码

#include <opencv.hpp>
#include <string>
#include <iostream>

using namespace cv;
using namespace std;

void drawTopNum(string tip, Scalar color, int len, Mat & picNum, double fontScale = 3, int thinkness = 10){
    Size size(len, len);
    circle(picNum, Point(picNum.cols - size.width / 2, size.height / 2), len / 2, color, CV_FILLED);    
    int fontface = CV_FONT_HERSHEY_SIMPLEX;
    Size textSize = getTextSize(tip, fontface, fontScale, thinkness, nullptr);
    putText(picNum, tip, Point(picNum.cols - size.width / 2 - textSize.width / 2, size.height / 2 + textSize.height / 2),
        fontface, fontScale, Scalar(255, 255, 255), thinkness);
}

int main(int argc, char ** argv){
    Mat src = imread("flower_Dance.jpg");
    if (src.empty()){
        cerr << "没有找到用户头像" << endl;
        exit(-1);
    }
    drawTopNum("1", Scalar(0, 0, 255), 100, src, 2, 5);

    imshow("res", src);
    waitKey();
    return 0;
}
OpenCV实现视频里面替换头像通常涉及以下步骤: 1. **视频读取**:首先需要使用OpenCV读取视频文件,可以通过`cv2.VideoCapture`函数来实现。 2. **人脸检测**:对视频中的每一帧使用人脸检测算法,比如Haar级联分类器或深度学习方法(如DNN模块),来定位人脸的位置。 3. **头像替换**:一旦检测到人脸位置,可以从视频帧中提取这个区域,并将该区域替换为新头像。替换时需要注意头像与原人脸大小和比例的匹配。 4. **帧合成**:将替换了头像的区域与原视频帧的其他部分合并,生成新的帧。 5. **视频写入**:将处理后的帧写入到新的视频文件中,可以使用`cv2.VideoWriter`。 6. **资源释放**:处理完毕后,释放读取和写入视频的资源。 实现代码示例: ```python import cv2 # 视频读取 cap = cv2.VideoCapture('input_video.mp4') # 人脸检测器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 替换的头像图片 new_face = cv2.imread('new_face.jpg', cv2.IMREAD_UNCHANGED) while True: ret, frame = cap.read() if not ret: break # 检测人脸 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: # 将头像缩放到与检测到的人脸区域相匹配 resized_face = cv2.resize(new_face, (w, h)) # 替换人脸区域 frame[y:y+h, x:x+w] = resized_face # 显示或写入视频 cv2.imshow('Frame', frame) # 按'q'退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() ``` 在实际应用中,可能还需要考虑光照、角度、表情等因素对人脸替换效果的影响,并进行相应的调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值