分治法:归并排序分析

目录
一.分而治之
二.归并排序性能分析



一.分而治之:


递归算法的复杂度计算方法:
1、代入法
2、递归树法 P50
3、主方法 

二.归并排序性能分析:


假设求解规模为n的问题耗时为,当n=1。当n>1时,根据分治法按以下步骤对问题进行处理:

  1. 分解:将规模为n分解为a个规模为的问题,假设分解耗时为
  2. 求解:求解a个规模为的问题,则求解这些问题的时间为
  3. 合并:将a个规模为的问题合并。假设该过程耗时为

经过上述处理,可得到:

                    1

 

在归并法中,分解、求解、合并操作的耗时如下

  1. 分解:分解操作为,耗时为常量,则
  2. 求解:归并法中,分解操作是将规模为n的问题分解成2个规模为的问题,则
  3. 合并:归并法的合并操作的伪代码和耗时如表1所示,其中,明显可得

                     表1

MERGER(A,p,q,r)                        代价  次数

  1. n1=q-p+1                         c1     1    
  2. n2=r-q                           c2     1
  3. 新建数组L和R                     c3     1
  4. for i=1 to n1                    c4     n/2            
  5.     L[i]=A[p+i-1]                c5     n/2    
  6. for j=1 to n2                    c6     n/2  
  7.     R[j]=A[q+j]                  c7     n/2  
  8. L[n1+1]=∞                       c8     1
  9. R[n2+1]=∞                       c9     1
  10. i=1                              c10    1
  11. j=1                              c11    1
  12. for k = p to r                   c12    n
  13.     if L[i]≤R[j]                c13    n
  14.         A[k]=L[i]                c14    t
  15.         i = i + 1                c15    t
  16.     else A[k]=R[j]               c16    n-t
  17.         j = j + 1                c17    n-t



假设 处理规模为 1 的问题和在分解和合并操作中处理每个元素的耗时的上界为常数c,则

因此公式1可变成                           2

                 

公式(2)不断迭代分解后可得:

     

假设经过k次分解后,达到规模为1的问题,即,所以,代入上述公式可得


归并排序小结
    1.归并排序的时间复杂度为O(nlgn), 空间复杂度为O(n)
    2. 归并排序属于稳定排序,即排序前后相等元素的先后顺序不变,这是在O(nlgn)系列算法中(比如快速排序)少有的稳定排序算法
    3. 在计算mid = (low + high) / 2时,如果low和high很大,则可能发生溢出,可将式子转换为mid = low + (high - low) / 2
    4. 书上伪代码是在每次merge时分配临时空间,这样多次分配释放会影响效率,可以预先分配O(n)的空间作为参数传给merge函数
    5. 归并排序可用于外排序。当我们要对一个很大的数据文件排序(文件不能一次装入内存),可以将其分段读入内存排序后写回(或写到临时文件),然后再使用归并算法合并已排序的多个子文件
    6. 类似的,如果要合并两个特别大的有序序列,去除重复元素,或者是找出相同元素,也可以采用merge的思想

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值