Lucas-Kanade 算法原理以及应用

Lucas-Kanade 算法原理以及应用

一 算法原理

1.1 目标函数

Lucas-Kanade Algorithm本质上是为了最小化目标函数:

x[I(W(x;p+Δp))T(x)]2        1

类似高斯牛顿法。其中 x 为图像下标,可以是二维(对应图像像素的坐标),也可以是一维(此时为图像展成一维数组时对应的下标);p为目标状态变量, W 为仿射变化函数,具体范例如下:

2D平移:

W(x;p)=(x+p1y+p2),p=[p1p2]T

3D仿射变化

W(x;p)=(1+p1p2p31+p4p5p6)xy1

其中
[p=(p1p2p3p4p5p6)T]

1.2 一阶泰勒公式展开

对公式1进行一阶泰勒公式展开可得

\[x[I(W(x;p))+IWpΔpT(x)]2\]       2

其中
[I=(IxIy)]

I 已经展开成一列n维向量,则I I W(x;p)的梯度;

1.3 最小化目标函数条件下的 Δp

求公式2关于 Δp 的偏导数

2x[IWp]T[I(W(x;p))+IWpΔpT(x)]      3

让公式3等于0,则

Δp=H1x[IWp]T[T(x)I(W(x;p))]      4

其中
H=x[IWp]T[IWp]

二 LK算在跟踪的应用

这部分将LK算法应用到具体的目标跟踪中,假设跟踪目标用一个角度、尺度可变的矩形进行描述
将矩形框的位移、角度和尺度参数代入公式 W(x;p) x p求得

2.1 平移、角度尺度版本

\[W(x;p)=(xScosθySsinθ+ΔxxSsinθ+yScosθ+Δy)\]

变换参数 p=(Δx,Δy,θ,S)T ,顺时针方向为正方向
则有以下推导

Wp=(1001xSsinθyScosθxScosθySsinθxcosθysinθxsinθ+ycosθ)

IWp=(IxIy)(1001xSsinθyScosθxScosθySsinθxcosθysinθxsinθ+ycosθ)
=IxIy((xsinθ+ycosθ)Ix+(xcosθysinθ)Iy)S(xcosθysinθ)Ix+(xsinθ+ycosθ)Iy

所以 IW(x;0)p=(IxIyyIx+xIyxIx+yIy)

2.2 平移版本

[W(x;p)=(x+Δx y+Δy)] ,其中 p=(Δx,Δy)T 则有:

Wp=(1001)

\[IWp=(IxIy)(1001)=(IxIy)\]

所以可得: [IW(x;0)p=(IxIy)]

2.3 平移、尺度版本

[W(x;p)=(Sx+Δx Sy+Δy)] ,其中 [p=(Δx,Δy,S)T] ,可得

\[IWp=(IxIy)(1001xy)=(IxIy)\]

所以
\[IW(x;0)p=(IxIyxIx+yIy)\]

2.4 算法流程

  1. 根据 p W截取图像 I ,并对I做归一化;
  2. 生成模板的下标矩阵 x y
  3. 计算模板的梯度 I
  4. 计算 IW(x;0)p
  5. 计算 H=x[IWp]T[IWp]
  6. 计算误差 [T(x)I(W(x;p))]
  7. 计算 \[x[IWp]T[T(x)I(W(x;p))]\]
  8. 根据公式 \[Δp=H1x[IWp]T[T(x)I(W(x;p))]\] ,求出状态参数的变化
  9. 更新目标状态: \[p=p+Δp\]
  10. 判断结果是否收敛,若不收敛,则返回步骤1

三 小结

1、本文的方法本质上是通过梯度下降方法来寻找局部最优解,因此需要初始位置要在最优解的领域内。也就是说,前后两帧目标状态不发发生明显变化的情况。
2、克服目标的大范围运动,可以通过图像金字塔的方法进行跟踪
3、在opencv中,其LK光流算法是实现图像子块的位置跟踪,子块大小一般为5*5.opencv的这个函数是结合图像金字塔,实现对子块的大范围跟踪。但这个函数不能直接得到子块的尺度和角度变化。
4、opencv的LK目标跟踪算法不能应用于光照突变的情况。但是如果目标函数的I和T如果是经过标准化的,相信能提高对光照变化的抗干扰能力

四 参考文献:

  1. Lucas-Kanade 20 Years On: A Unifying Framework IJCV 2004
  2. 基于Lucas-kanade目标跟踪算法(本文算法实现代码)
  3. 基于光流法的目标跟踪(代码):使用opencv的稀疏光流法实现的跟踪算法,是一个基于点跟踪的目标跟踪算法
  4. 基于前向后向光流的目标跟踪(代码)(Forward-Backward Error: Automatic Detection of Tracking Failures):基于光流法的目标跟踪的改进算法
  • 5
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
当然!下面是一个简单的 Lucas-Kanade 算法的 Python 代码实现示例: ```python import numpy as np def lucas_kanade(image1, image2, window_size=3): # 转换为灰度图像 if len(image1.shape) > 2: image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) if len(image2.shape) > 2: image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) # 设置窗口大小和步长 window_half = window_size // 2 step = 1 # 计算图像梯度 gradient_x = cv2.Sobel(image1, cv2.CV_64F, 1, 0, ksize=3) gradient_y = cv2.Sobel(image1, cv2.CV_64F, 0, 1, ksize=3) rows, cols = image1.shape u = np.zeros((rows, cols)) v = np.zeros((rows, cols)) for i in range(window_half, rows - window_half, step): for j in range(window_half, cols - window_half, step): # 提取窗口内的图像 window1 = image1[i-window_half:i+window_half+1, j-window_half:j+window_half+1] # 计算窗口在第二幅图像中的位置 x = j + int(u[i, j]) y = i + int(v[i, j]) # 如果窗口越界,则跳过 if x < window_half or x >= cols - window_half or y < window_half or y >= rows - window_half: continue # 提取窗口内的图像 window2 = image2[y-window_half:y+window_half+1, x-window_half:x+window_half+1] # 计算窗口内的光流 error = window1 - window2 gradient = np.array([gradient_x[i-window_half:i+window_half+1, j-window_half:j+window_half+1].flatten(), gradient_y[i-window_half:i+window_half+1, j-window_half:j+window_half+1].flatten()]).T steepest_descent = gradient.T.dot(gradient) delta_p = np.linalg.inv(steepest_descent).dot(gradient.T).dot(error.flatten()) # 更新光流 u[i, j] += delta_p[0] v[i, j] += delta_p[1] return u, v ``` 这只是一个简单的示例,实际上,Lucas-Kanade 算法还有很多改进和优化的方法。这段代码实现了基本的光流计算,但请注意,你需要安装并导入适当的库(如 Numpy 和 OpenCV)来运行此代码。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值