在河之洲
码龄10年
  • 162,970
    被访问
  • 96
    原创
  • 1,405,107
    排名
  • 46
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2012-05-21
博客简介:

在河之洲

博客描述:
code is cheap, show me the blog!
查看详细资料
个人成就
  • 获得76次点赞
  • 内容获得42次评论
  • 获得90次收藏
创作历程
  • 8篇
    2019年
  • 2篇
    2017年
  • 11篇
    2016年
  • 55篇
    2015年
  • 4篇
    2014年
  • 21篇
    2013年
成就勋章
TA的专栏
  • 深度学习
    2篇
  • linux
    5篇
  • 学习opencv
    5篇
  • 从错误中学python
    5篇
  • opencv编程
  • c++剖析
    10篇
  • 学python
    15篇
  • C#学习
    19篇
  • github
    1篇
  • ACM题解
    13篇
  • STL学习
    5篇
  • 算法基础
    2篇
  • 计算机组成
    3篇
  • opencv学习
    6篇
  • 图像处理
    3篇
  • 读书笔记
    5篇
  • 程序人生
    2篇
  • 学习方法
  • 计算机视觉与机器学习
    9篇
兴趣领域 设置
  • 人工智能
    pytorch
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tensorflow学习笔记

title: tensorflow学习笔记date: 2017/11/20 12:04:12categories:深度学习tags:目标检测深度学习神经网络matplotlib.pyplot 的使用:import matplotlibmatplotlib.use('Agg')import matplotlib.pyplot as plt fig = plt.figu...
原创
发布博客 2019.11.12 ·
69 阅读 ·
0 点赞 ·
0 评论

linux常用操作

title: linux常用工具date: 2018/2/13 22:04:12tags:linuxExpect脚本安装方法:sudo apt-get install tcl tk expect脚本例子自动SSH连接:#!/usr/bin/expectset timeout 30set ip [lindex $argv 0]spawn ssh -l maxiaol...
原创
发布博客 2019.11.12 ·
62 阅读 ·
0 点赞 ·
0 评论

从编译器的辅助信息看c++对象内存布局

编程cpp预知识本文的内容使用的是32位的编译器编译出的结果,可以打印出类的内存布局信息DevCPP IDE这个IDE是我比较喜欢的windows下的cpp的IDE之一,它有一个工具->编译选项,可以选择编译器类型,也可以在编译选项中加入一些信息,为了能够输出内存布局信息,我在编译时加入以下命令--std=c++11 -fdump-class-hierarchy -f...
原创
发布博客 2019.11.12 ·
209 阅读 ·
0 点赞 ·
0 评论

zsh的配置

zsh简介待补充…zsh拥有极强的命令补全、智能提示功能,并且能够记录工作目录参考为什么说 zsh 是 shell 中的极品?安装配置zsh安装脚本如下:# download and unpackwget -O zsh.tar.gz https://sourceforge.net/projects/zsh/files/latest/downloadmkdir zsh &&a...
原创
发布博客 2019.11.12 ·
331 阅读 ·
0 点赞 ·
0 评论

gitlabci 进阶

持续集成自动化测试虚拟化CI好用的一些runnerssh : runner中指定远端机器,传artifacts需要在远端安装gitlab-runnerdocker:runner中指定imageCI好用的一些variableCI_PROJECT_NAME: 项目名称CI_PROJECT_PATH: 项目在本地的相对路径CI的触发条件when alwaysonly -...
原创
发布博客 2019.11.12 ·
79 阅读 ·
0 点赞 ·
0 评论

CI从入门到放弃

持续集成自动化测试虚拟化Introduce to GitLab CIGitLab CI(Continuous Integration )从GitLab8.0开始就集成于GitLab中,后端的Runner使用.gitlab-ci.yml file 文件来描述对项目进行配置,.gitlab-ci.yml文件告诉GitLab运行器该做什么。 默认情况下,它运行一个包含三个stage的pi...
原创
发布博客 2019.11.12 ·
173 阅读 ·
1 点赞 ·
0 评论

简洁的vim配置

date: 2018/6/9 22:04:12tags:工具linuxvim配置好了是可以很高效的,但是现在一些vim配置文件写得很复杂,导致拖慢了vim的执行速度,因此我自己写了一个精简的vimrc,里面只包含我真正需要的东西。vim好用的插件使用vundle管理插件,所以在使用该配置之前执行git clone https://github.com/VundleVim/Vu...
原创
发布博客 2019.11.12 ·
102 阅读 ·
0 点赞 ·
0 评论

gluon的使用经验

深度学习目标检测深度学习神经网络学到的新知识bn放在relu后面BN应该放在relu后用于分类、检测和分割的移动网络 MobileNetV2如何评价MobileNetV2卷积核的数量卷积神经网络 — 从0开始当输入数据有多个通道的时候,每个通道会有对应的权重,然后会对每个通道做卷积之后在通道之间求和。所以当输出只有一个的时候,卷积的channel数目和data的cha...
原创
发布博客 2019.11.07 ·
780 阅读 ·
0 点赞 ·
1 评论

不会装cuda配环境的小学生怎么躺撸caffe

DL如今已经快成为全民玄学了,感觉离民科入侵不远了。唯一的门槛可能是环境不好配,特别是caffe这种依赖数10种其它软件打框架。不过有了docker和k8s之后,小学生也能站撸DL了。
原创
发布博客 2017.06.26 ·
904 阅读 ·
1 点赞 ·
0 评论

我的博客搬迁啦

2011-2014年博客见:在河之洲-博客园 2013-2016年博客见:在河之洲-csdn 2016至今博客见:在河之洲-gitpage 我的简书专题:计算机视觉与机器学习
原创
发布博客 2017.03.27 ·
586 阅读 ·
0 点赞 ·
0 评论

比较型排序与非比较型算法的总结对比

桶排序、计数排序、基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
原创
发布博客 2016.09.12 ·
2468 阅读 ·
0 点赞 ·
0 评论

[林轩田]15-验证法

模型选择的因素留1法做交叉验证留一法k-fold
原创
发布博客 2016.08.19 ·
714 阅读 ·
0 点赞 ·
0 评论

[林轩田]14-规范化

规范化多项式集合回归约束宽松的回归约束 looser constraint 稀疏规则化规则化的Wregweight decay regularization矩阵形式表示规则化回归问题选择最好的惩罚函数L1L2 规范参考资料 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的
原创
发布博客 2016.08.18 ·
819 阅读 ·
0 点赞 ·
0 评论

[林轩田]13-过拟合的危害

目录13-过拟合的危害什么是过拟合overFittingunderFitting过拟合的原因精确实验探究overfit程度的影响因素deterministic 噪声过拟合的解决办法其他资料13-过拟合的危害什么是过拟合如下图我们本来想要的是蓝色的二次曲线,取了五个点,但是我们使用红色的四次曲线穿过这5个点,使得 Ein E_{in} 很小但是我们从图像上可以看到 Eout E_{o
原创
发布博客 2016.08.17 ·
2364 阅读 ·
0 点赞 ·
0 评论

[林轩田]12-非线性变换

二次方程的hypothesis对称中心在原点的二次方程一般情形的二次式非线性变换空间变换非线性变换的代价z空间的维度z空间的计算和存储代价二次方程的hypothesis对于非线性的数据分类,如果我们使用线性模型,就会使得Ein很大,分得不好。对称中心在原点的二次方程现在我们考虑如何用二次方程(圆的方式)来进行separate: 我们可以使用半径平方为0.6的圆可以将它分开 。这里我们进
原创
发布博客 2016.08.16 ·
815 阅读 ·
0 点赞 ·
0 评论

11-分类的线性模型

三种线性模型错误衡量现在如果用这三个方法都用于二值分类的话,那么它们各自的错误衡量就变为: s表示用这个模型得出的分数,取值范围应该跟原来是一样的,线性回归的s=wx取值范围为实数R,logistic回归的取值范围为0-1(一个概率) ys:合起来表示正确的分数把三个模型的错误衡量表示在同一个坐标轴上面。cross entropy error :CE, logistic regression的e
原创
发布博客 2016.08.14 ·
898 阅读 ·
0 点赞 ·
0 评论

10-logistic regression

以下是台大林轩田老师讲的机器学习基石第10课的学习笔记 。软性二值分类(soft binary classification)目标函数这里我们的二值分类和硬性二值分类的数据是一样的,但是目标函数是不一样的。而软性二值分类所真正需要的数据是跟目标函数一样的概率,但是我们收集的数据却是分类的结果。logistic hypothesis对于提取的特征向量: 计算各个分量的加权分数,但我们需要把这个
原创
发布博客 2016.08.12 ·
325 阅读 ·
0 点赞 ·
0 评论

cpp11新特性详解与应用

以下是我最近几个星期学习c++11做的一些记录,包括收集的一些信息,整理的相关概念和写的一些测试代码。具体相关代码我写了24个cpp文件,托管在来github上面cpp11,记录一下。Lambda表达式构成为了描述一个lambda,你必须提供: 它的捕捉列表:即(除了形参之外)它可以使用的变量列表(”[&]” 在上面的记录比较例子中意味着“所有的局部变量都将按照引用的方式进行传递”)。如果不需要捕
原创
发布博客 2016.08.08 ·
3148 阅读 ·
2 点赞 ·
0 评论

python学习笔记8——公约数与公倍数问题

python学习笔记8——数学中的约数问题问题问题1:最大公约数给你两个正整数a和b, 输出它们的最大公约数问题2:最小公倍数给你两个正整数a和b, 输出它们的最小公倍数问题3: 求解100以内的所有素数输出100以内的所有素数,素数之间以一个空格区分问题4: 公约数的个数给你两个正整数a,b, 输出它们公约数的个数。问题5: 逆解最大公约数与最小公倍数我们经常遇到的问题是给你两个数,要你求最大公
原创
发布博客 2016.07.03 ·
845 阅读 ·
1 点赞 ·
0 评论

论文分析A Key Volume Mining Deep Framework for Action Recognition

行为识别的意义难题所在Action Recognition 是计算机视觉中比较难的一个问题。因为:不同人完成同一种动作的方式有很大差异。比如同样是挥手,有些人举得很高幅度很大,有些人动作很矜持;同一种动作往往会有很多亚类。收集数据时候,很难为每一个亚类都收集足够的训练样本。比如拳击就可以包括上勾拳,平勾拳,斜勾拳等众多亚类。数据很难收集。这是因为视频的精细标注(标注每个动作发生的时空位置)工作
原创
发布博客 2016.06.19 ·
3946 阅读 ·
0 点赞 ·
1 评论
加载更多