格雷码生成问题(分治策略)

本文介绍了如何使用分治方法和异或生成法构造n位Gray码。分治法通过递归将问题分解,由n-1位Gray码生成n位Gray码。异或生成法则通过逐位异或操作将自然二进制码转换为格雷码。文中提供了两种方法的C语言代码实现,并进行了测试,如n=4时的输出展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

n位Gray码是一个长度为2n的序列,序列中的每个元素长度都是为n的(0,1)串,且都是不相同的,相邻元素中只有一位不同。求设计一个算法构造任意的n位的Gray码。

题目源于:王晓东.《计算机算法设计与分析》.第5版习题2-14

例如:当输入n=3,得到如下输出:

000

001

011

010

110

111

101

100

算法思路与代码实现

方法一:分治方法(递归实现)

分治方法的核心思想是把原有问题拆分成若干个规模较小的问题,再将问题的解整合归化到原问题的解。

对问题进行分析,可以发现,格雷码的构造有以下规律:
n位的Gray码可以由n-1位的Gray构造,其顺序排列最高位补零,和镜像排列最高位补零,就得到了n位的Gray码。(如下所示)
格雷码规律
所以,得到n位Gray码的问题可以变为得到n-1位Gray码的问题,再将n-1位Gray码处理得到n位Gray,这样就将问题规模减小了。

具体而言:记函数 G r a y ( n ) Gray(n) Gray(n)是求 n n n位格雷码。 G r a y ( n ) Gray(n) Gray(n)的前半部分(共 2 n − 1 2^{n-1} 2n1项),由 G r a y ( n − 1 ) Gray(n-1) Gray(n1)顺序排列,每元素首位添"0"得到; G r a y ( n ) Gray(n) Gray(n)的后半部分,由 G r a y ( n − 1 ) Gray(n-1) Gray(n1)镜像排列并首位添"1"得到。

方法二:异或生成法(二进制转格雷码)

查阅了一些资料,格雷码可以由自然二进制码生成而来。具体做法如下:
对于一个自然二进制数(以5位为例): B = n 4 n 3 n 2 n 1 n 0 B = n_4n_3n_2n_1n_0 B=n4n3n2n1n0 将其对应转换为(5位)格雷码 G = g 4 g 3 g 2 g 1 g 0 G=g_4g_3g_2g_1g_0 G=g4g3g2g1g0. 其中:

g 0 = n 0 ⨁ n 1 g0 = n_0\bigoplus n_1 g0=n0n1

g 1 = n 1 ⨁ n 2 g1 = n_1\bigoplus n_2 g1=n1n2

g 2 = n 2 ⨁ n 3 g2 = n_2\bigoplus n_3 g2=n2n3

g 3 = n 3 ⨁ n 4 g3 = n_3\bigoplus n_4 g3=n3n4

g 4 = n 4 ⨁ 0 g4 = n_4\bigoplus 0 g4=n40

即有: G = b ( n ) ⨁ b ( n + 1 ) G = b(n) \bigoplus b(n+1) G=b(n)b(n+1) b ( n ) b(n) b(n)表示 B ( n ) B(n) B(n)从右往左的对应位。当 n n n B ( n ) B(n) B(n)最高位时, b ( n + 1 ) = 0 b(n+1)=0 b(n+1)=0
例如:二进制自然数101, 其对应的格雷码为 111.

以下为算法实现代码:

代码1:分治方法

#include<stdio.h>
#include<stdlib.h> 
#include<string.h> 
int num;
void getGray(int n,char **Gray){ //递归函数
	if(n==1){// 边界条件 
		return;
	}
	getGray(n-1,Gray);
     //Gray(n-1)的数量
	int m = 1<<(n-1);//移位计算即m = 2^(n-1)
    
    //Gray(n)的前半部分直接使用Gray(n-1)(首位补0)
    //Gray(n)的后半部分使用Gray(n-1)镜像排列,首位补1
	for(int i=m;i>0;i--){
		strcpy(Gray[++m], Gray[i]);
		Gray[m][num-n] = '1';//首位补1
	}
	return;
}

int main(){
	int n;printf("n=");scanf("%d",&n);//输入n
	num = n;//记录n
	char **Gray = (char**)malloc(sizeof(char*)*((1<<n)+1));//首位不用
	for(int i=1;i<(1<<n)+1;i++){
		Gray[i]=(char*)malloc(sizeof(char)*(n+1));//最后一位放'\n'
	}//添加字符串结束标志,便于输出
	//初始化0,1
	for(int i=0;i<n-1;i++){
			Gray[1][i]='0';
			Gray[2][i]='0';
		}
	Gray[1][n-1]='0'; 
	Gray[2][n-1]='1'; 
	Gray[1][n]='\0'; 
	Gray[2][n]='\0';

	getGray(n,Gray);
	for(int i=1;i<(1<<n)+1;i++){
		printf("%s\n",Gray[i]);
	}
return 0;
}

根据此程序和其对应原理,可以很快地得到其非递归代码(用循环替代)

#include<stdio.h>
#include<stdlib.h> 
#include<string.h>
int main(){//非递归程序
	int n; 
	printf("n=");
	scanf("%d",&n); 
	char **Gray = (char**)malloc(sizeof(char*)*((1<<n)+1));//首位不用
	for(int i=1;i<(1<<n)+1;i++){
		Gray[i]=(char*)malloc(sizeof(char)*(n+1));//最后一位放'\n'
	}
	//初始化0,1 
	for(int i=0;i<n-1;i++){
			Gray[1][i]='0';
			Gray[2][i]='0';
		}
	Gray[1][n-1]='0'; 
	Gray[2][n-1]='1'; 
	Gray[1][n]='\0'; 
	Gray[2][n]='\0';
	
	for(int i=2;i<n+1;i++){
		int m = 1<<(i-1);
		for(int j=1;j<m+1;j++){
			strcpy(Gray[m+j], Gray[m-j+1]);
			Gray[m+j][n-i] = '1';
		}
	}
    //输出
	for(int i=1;i<(1<<n)+1;i++){
		printf("%s\n",Gray[i]);
	}
return 0;
}

代码2:异或生成法

#include<stdio.h>
#include<stdlib.h> 
int main(){
	int n;printf("n=");scanf("%d",&n);
	int t = 0;
	char *gray = (char*)malloc(sizeof(char)*(n+1));//保存每次生成的格雷码
	gray[n] = '\0';//字符串结束标志,方便输出
    
    //异或生成格雷码
	for(int i=0;i<(1<<n);i++){
		t = (i>>1)^i;//G(n)=b(n) xor b(n+1)
        
        //将十进制表示的格雷码转换为二进制
		for(int i=1;i<n+1;i++){
			if(t&1) gray[n-i] = '1';
			else gray[n-i] = '0';
			t=t>>1;
		}
        //这里直接输出,也可以保存到相关数组内
		printf("%s\n",gray);
	}
return 0;
}

代码测试

测试n=4
测试结果
分享的同时记录学习,有问题欢迎交流指正^ ^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值