求多条线段相交(暴力了点)





#include<stdio.h>
#include<math.h>
struct point 
{
	double x,y;
};
struct line
{
	point a,b;
}g[120];
double MAX(double a,double b)
{
	return a>b?a:b;
}
double MIN(double a,double b)
{
	return a<b?a:b;
}
double cross_segment(point a,point b,point c)
{
	return (c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y); 
}
int onsegment(point a,point b,point c)
{
	double d1=MIN(a.x,b.x);
	double d2=MAX(a.x,b.x);
	double d3=MIN(a.y,b.y);
	double d4=MAX(a.y,b.y);
	if(d1<=c.x&&d2>=c.x&&d3<=c.y&&d4>=c.y)
	return 1;
	return 0;
}
int segments(line a,line b)
{
	double d1=cross_segment(b.a,b.b,a.a);
	double d2=cross_segment(b.a,b.b,a.b);
	double d3=cross_segment(a.a,a.b,b.a);
	double d4=cross_segment(a.a,a.b,b.b);
	if(((d1>0&&d2<0)||(d1<0&&d2>0))&&((d3>0&&d4<0)||(d3<0&&d4>0)))
	return 1;
	else if(d1==0&&onsegment(b.a,b.b,a.a))
	return 1;
	else if(d2==0&&onsegment(b.a,b.b,a.b))
	return 1;
	else if(d3==0&&onsegment(a.a,a.b,b.a))
	return 1;
	else if(d4==0&&onsegment(a.a,a.b,b.b))
	return 1;
	else
	return 0;
}

int main()
{
	int i,j,k,m,n,ncase,sum;
	while(scanf("%d",&m),m)
	{
		
		for(i=0;i<m;i++)
		scanf("%lf%lf%lf%lf",&g[i].a.x,&g[i].a.y,&g[i].b.x,&g[i].b.y);
		sum=0;
		if(m==1)
		{
			printf("0\n");
			continue;
		}
		for(i=0;i<m;i++)
		{
			for(j=i+1;j<m;j++)
			{
				if(segments(g[i],g[j]))
				sum++;
			}
		}
		printf("%d\n",sum);
	}
	return 0;
}


在VB.NET中,如果要判断两条线段是否相交,并且知道这两条线段分别由四个定义,那么可以首先定义一个方法来确定两个之间的线段是否相交线段相交的判断涉及到向量的叉乘以及线段的端比较。 以下是判断线段相交的逻辑步骤: 1. 首先,我们定义两条线段线段A由P1和P2定义,线段B由P3和P4定义。 2. 判断两条线段是否平行或共线,如果平行或共线,则需要额外的逻辑来处理这种情况,因为它们可能重合或者根本不相交。 3. 如果线段不平行,可以使用叉乘来判断线段A上的是否在B线段的两侧,同理判断线段B上的是否在A线段的两侧。如果这两个条件都满足,则线段A和线段B相交。 4. 在VB.NET中,可以使用`Math.Sign()`方法来获取叉乘的结果,从而判断的位置。 以下是一个简单的VB.NET代码示例,用于判断两条线段是否相交: ```vb.net Public Class LineSegment Public P1 As Point Public P2 As Point Public Sub New(p1 As Point, p2 As Point) Me.P1 = p1 Me.P2 = p2 End Sub End Class Public Function DoSegmentsIntersect(line1 As LineSegment, line2 As LineSegment) As Boolean Dim a1 = line1.P1.Y - line1.P2.Y Dim b1 = line1.P2.X - line1.P1.X Dim c1 = a1 * line1.P1.X + b1 * line1.P1.Y Dim a2 = line2.P1.Y - line2.P2.Y Dim b2 = line2.P2.X - line2.P1.X Dim c2 = a2 * line2.P1.X + b2 * line2.P1.Y Dim determinant = a1 * b2 - a2 * b1 ' 线段相交 If determinant <> 0 Then Dim x = (b2 * c1 - b1 * c2) / determinant Dim y = (a1 * c2 - a2 * c1) / determinant ' 确保交在两条线段上 If Math.Min(line1.P1.X, line1.P2.X) <= x <= Math.Max(line1.P1.X, line1.P2.X) AndAlso _ Math.Min(line1.P1.Y, line1.P2.Y) <= y <= Math.Max(line1.P1.Y, line1.P2.Y) AndAlso _ Math.Min(line2.P1.X, line2.P2.X) <= x <= Math.Max(line2.P1.X, line2.P2.X) AndAlso _ Math.Min(line2.P1.Y, line2.P2.Y) <= y <= Math.Max(line2.P1.Y, line2.P2.Y) Then Return True End If ' 线段重合或共线(可能相交或不相交) ElseIf a1 * b2 = a2 * b1 Then ' 这里需要额外的逻辑来处理平行或共线的情况 End If Return False End Function ``` 注意:上述代码是一个简化的示例,没有处理所有可能的边界情况,例如端相交的情况。在实际应用中,还需要考虑这些情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值