都有Python了,还要什么编译器

本文探讨了在现代技术环境下,编译器不再是编写高性能代码的唯一途径。通过LLVM和Python,可以实现用脚本语言生成高度优化的原生代码,甚至超越C和C++的性能。文中详细介绍了如何用Python生成LLVM中间代码,进行代码插入和优化,最终达到与C、C++相当甚至更好的运行效率。
摘要由CSDN通过智能技术生成

编译的目的是将源码转化为机器可识别的可执行程序,在早期,每次编译都需要重新构建所有东西,后来人们意识到可以让编译器自动完成一些工作,从而提升编译效率。

但“编译器不过是用于代码生成的软机器,你可以使用你想要的任何语言来生成代码”,真的是必要的吗?

诚然,编译器可以为你生成高性能的代码,但是你真的需要编译器吗?另一种方法是用 Assembly 编写程序,虽然有点夸大,但这种方法有两个主要缺陷:

1. 汇编代码不可移植;

2. 虽然在现代工具的辅助下变得容易了些,但 Assembly 编程仍然需要大量繁琐的工作。

值得庆幸的是,我们都生活在二十一世纪,这两个问题都已得到解决。第一个解决方案是 LLVM,最初,它意味着“低级虚拟机”,这正是我们可以确保可移植性的原因。简而言之,它需要用一些非常低级别的与硬件无关语言编写的代码,并为特定的硬件平台返回一些高度优化的原生代码。使用 LLVM,我们既具有低级编程的强大功能,又具有面向硬件微优化的自动化功能。

第二个问题的解决方法是使用“脚本”语言,Scheme、Python、Perl,甚至 bash 或 AWK 都可以消除繁琐的工作。对于新手小白想更轻松的学好Python基础,Python爬虫,web开发、大数据,数据分析,人工智能等技术,这里给大家分享系统教学资源,架下我尉(同英): 2763 177 065 【教程/工具/方法/解疑】

实验计划

首先,让我们生成一个完全内联展开的解决方案,并将其嵌入到基准测试代码中。该计划如下:

1. 使用 Clang 为基准生成 LLVM 中间代码,该基准用于测量 solve_5,一个不存在的函数;

2. 使 Python 在 LLVM 中生成线性求解器(linear solver)代码;

3. 使用 Python 脚本测试基准,用生成求解器替换 solve_5 调用;

4. 使用 LLVM 静态编译器将中间代码转换为机器代码;

5. 使用 GNU 汇编器和 Clang 的链接器将机器代码转换为可执行的二进制文件。

这就是它在 Makefile 中的样子:

image

Python 部分

我们需要 Python 中的线性求解器(linear solver),就像我们使用 C 和 C ++ 一样,此处代码为:

<
PeachPy 是一个用于编写高性能汇编内核的 Python 框架,可在汇编中编写模块。 它自动化了一些细节,并允许使用 Python 生成重复的汇编代码序列。PeachPy 旨在简化编写优化的汇编内核,同时保留传统的汇编所有优化机会。一些特性:用于 Windows,Unix 和 Golang 程序集的通用汇编语法.PeachPy 可以直接生成 ELF,MS COFF 和 Mach-O 对象文件以及 Golang 工具链的汇编列表自动适应不同的调用约定和 ABIs用于不同平台的功能可以从汇编相同的源生成支持 Microsoft x64 ABI, System V x86-64 ABI (Linux 和 OS X), Linux x32 ABI, Native Client x86-64 SFI ABI, Golang AMD64 ABI, Golang AMD64p32 ABI自动分配寄存器PeachPy 是灵活的,而且允许在同一代码中混合自动分配寄存器和硬编码寄存器汇编编程中常规任务的自动化:函数 prolog 和 epilog 由 PeachPy 生成数据常量的重复数据删除 (e.g. Constant.float32x4(1.0))分析在函数中使用的 ISA 扩展支持 x86-64 指令,最高可达 AVX-512 和 SHA含 3dnow! , XOP, FMA3, FMA4, TBM 和 BMI2.不括 x87 FPU 和大多数系统指令使用自动生成的测试 auto-generated tests 进行严格测试,以生成与 binutils 相同的操作码自动生成元数据文件具有模块依赖性的Makefile (-MMD 和-MF 选项)C 头文件生成的函数JSON 格式的函数元数据基于 Python 的元编程和代码生成多个指令流的复用(有助于软件流水线)兼容 Python 2 和 Python 3,CPython 和 PyPy在线 DEMO: PeachPy.IO 标签:PeachPy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值