编译的目的是将源码转化为机器可识别的可执行程序,在早期,每次编译都需要重新构建所有东西,后来人们意识到可以让编译器自动完成一些工作,从而提升编译效率。
但“编译器不过是用于代码生成的软机器,你可以使用你想要的任何语言来生成代码”,真的是必要的吗?
诚然,编译器可以为你生成高性能的代码,但是你真的需要编译器吗?另一种方法是用 Assembly 编写程序,虽然有点夸大,但这种方法有两个主要缺陷:
1. 汇编代码不可移植;
2. 虽然在现代工具的辅助下变得容易了些,但 Assembly 编程仍然需要大量繁琐的工作。
值得庆幸的是,我们都生活在二十一世纪,这两个问题都已得到解决。第一个解决方案是 LLVM,最初,它意味着“低级虚拟机”,这正是我们可以确保可移植性的原因。简而言之,它需要用一些非常低级别的与硬件无关语言编写的代码,并为特定的硬件平台返回一些高度优化的原生代码。使用 LLVM,我们既具有低级编程的强大功能,又具有面向硬件微优化的自动化功能。
第二个问题的解决方法是使用“脚本”语言,Scheme、Python、Perl,甚至 bash 或 AWK 都可以消除繁琐的工作。对于新手小白想更轻松的学好Python基础,Python爬虫,web开发、大数据,数据分析,人工智能等技术,这里给大家分享系统教学资源,架下我尉(同英): 2763 177 065 【教程/工具/方法/解疑】
实验计划
首先,让我们生成一个完全内联展开的解决方案,并将其嵌入到基准测试代码中。该计划如下:
1. 使用 Clang 为基准生成 LLVM 中间代码,该基准用于测量 solve_5,一个不存在的函数;
2. 使 Python 在 LLVM 中生成线性求解器(linear solver)代码;
3. 使用 Python 脚本测试基准,用生成求解器替换 solve_5 调用;
4. 使用 LLVM 静态编译器将中间代码转换为机器代码;
5. 使用 GNU 汇编器和 Clang 的链接器将机器代码转换为可执行的二进制文件。
这就是它在 Makefile 中的样子:
Python 部分
我们需要 Python 中的线性求解器(linear solver),就像我们使用 C 和 C ++ 一样,此处代码为:
<