keras对数据集cifar100实现卷积神经网络识别

 

    model = keras.models.Sequential([
        # 卷积层1; 32个5*5*3的filter
        keras.layers.Conv2D(32, kernel_size=5, strides=1, padding="same", data_format="channels_last", activation=tf.compat.v1.nn.relu),
        # 池化层1;2*2窗口
        keras.layers.MaxPool2D
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值