- 博客(33)
- 资源 (1)
- 问答 (2)
- 收藏
- 关注
原创 Using Spark‘s default log4j profile: org/apache/spark/log4j2-defaults.properties
【代码】Using Spark‘s default log4j profile: org/apache/spark/log4j2-defaults.properties。
2024-10-22 17:07:35 212
原创 java数据结构之分块查找
2.进行分块,保证第一块的最大值比第二块的最小值小,以此类推。尽量保证块数为:数字总数开根号。4.然后获取块内索引值得到最终索引值。分块查找多适用于块间有序,块内无序。运行演示:(得到的是该数字的索引值)1.将数字存储在数组中。对下列数字进行查找。3.获取块间的索引值。
2024-01-30 19:55:34 197
原创 java拼图小游戏
目录GameJFrame游戏主界面类:LoginJFrame类:注册(RegisterJFrame)类:用户(user)JavaBean类:验证码工具(CodeUntil)类:效果部分演示:注册:登录:游戏主界面:更换图片:文件目录: 完整代码:LoginJFrame类:注册(RegisterJFrame)类:用户(user)JavaBean类:验证码工具(CodeUntil)类:效果部分演示:注册:需要图片素材可以私信
2024-01-26 20:38:14 478
原创 爬取短美文付费文章
import requestsfrom lxml import etreeurl = "https://www.duanmeiwen.com/yulu/shanggan/2060493.html"# 发起网络请求content = requests.get(url).content.decode('GBK')# 加载数据, 过滤doc = etree.HTML(content).xpath("//div[@class='content']/p")# 循环for item in...
2022-05-03 14:38:09 82
原创 cannot import name ‘imread‘ from ‘scipy.misc‘
解决方法:将from scipy.misc import imreadfrom scipy.misc import imresize转换成from imageio import imread
2022-04-28 21:23:18 217
原创 欠拟合,过拟合,岭回归
alpha:0~1 1~10完整代码:import pandas as pdfrom sklearn.datasets import load_bostonfrom sklearn.linear_model import LinearRegression, SGDRegressor, Ridgefrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessi...
2022-04-28 17:18:33 133
原创 线性回归和波士顿房价预测
线性回归,找一种能预测的趋势预测值和真实值存在一定的误差迭代的算法回归:知道有误差,不断的减少误差数据:boston-house/house_data.csv at master · longhopefor/boston-house (github.com)import pandas as pdfrom sklearn.datasets import load_bostonfrom sklearn.linear_m
2022-04-28 17:15:20 346
原创 商品检测数据集
学习目标了解常用目标检测数据集 了解数据集构成官网地址:TThe PASCAL Visual Object Classes Homepage (ox.ac.uk)下载地址:Pascal VOC Dataset Mirror地址:Open Images Dataset V6官网:tzutalin/labelImg: 🖍️ LabelImg is a graphical image annotation tool and label objec
2022-04-27 18:50:30 558
原创 SSD进行物体检测
1.案例效果:2.案例需求:代码:对结果进行标记-完整代码:def tag_picture(self, images_data, outputs): """ 显示预测结果到图片中 :return: """ # 获取每张图片预测结果的值 for i, img in enumerate(images_data): # 解析输出结果,每张图片的标签,置信度和位置 pre
2022-04-26 17:07:28 492
原创 R-CNN
候选区域方法:提供了一个物体检测的一种重要思路R-CNN步骤:1.对于一张图片,找出默认2000个候选区域 2.2000个候选区域做大小变换,输入AlexNet当中,得到特征向量 2000 * 4096 3.经过20个类别的SVM分类器,对于2000个候选区域做判断,得到(2000, 20)得分矩阵 4.2000个候选区域做NMS,取出不好的,重叠高度的一些候选区域,得到剩下分数高的,从而得到好的框 5.修正候选框,做一个bbox的回归微调...
2022-04-24 15:38:50 1089
原创 Overfeat模型(滑动窗口)
对于多个目标的情况,就不能以固定个数输出物体的位置值 滑动窗口首先定义若干个大小窗口,k个 k中每个窗口都要滑动图片,每个窗口滑动M次 K * M暴力破解方式 计算量太大
2022-04-24 15:37:18 230
原创 目标检测概述
项目结构数据采集层:主要做数据收集标注工作深度模型层:YOLO,SDD模型,模型导出,Serving部署用户层:跟前端交互(web后台) 对接部署模型
2022-04-23 17:29:12 178
原创 迁移学习的介绍和案例
案例迁移学习利用数据,任务和模型之间的相似性, 都是分类问题 在旧的领域学习过或训练好的模型 应用于新的领域进行训练模型地址:models/research/slim at master · tensorflow/models · GitHubfine tuning, 微调调整模型参数不需要过多调整 调整模型结构,微微调整 其中Pre_trained:预训练模型 fine tuning:微调后的模型预训练模型:tensorflow Model .
2022-04-22 20:05:39 573
原创 Keras基于VGG对五种图片类别识别的迁移学习
/数据集:http://39.78.67.216:9000/csdn-downloads/2022-04-20/20220420Z6t8A1C9.zip案例效果2. 数据集以及迁移需求数据集是某场景下5个类别图片的识别我们利用现有的VGG模型去进行微调思路和步骤读取本地的图片数据以及类别 keras.preprocessing.image import ImageDataGenerator提供了读取转换功能 模型的结构修改(添加我们自定的分类层) freeze掉原始VG
2022-04-22 20:01:34 1102
原创 BN和神经网络调优
学习目标:掌握基本的超参数以及调参技巧·掌握BN的原理以及作用/批标准化:根本上不是去优化模型,而是帮助我们更好地去训练,简单训练过程,节省时间。 解决目的:内部协变量偏移 对于深层网络一些层级输出进行批标准化在标准化之后,增加一个状态分布参数,让标准数据进行修改分布 garma beta 作用:BN减少不同数据分布状态带来的影响,模型鲁棒性强,测试准确率高,防止过拟合作用。 BN使得不同层...
2022-04-20 17:50:18 1965
原创 经典分类网络
学习目标:知道LeNet-5网络结构。了解经典的分类网络结构知道一些常见的卷机网络结构的优化知道NIN中1x1卷积原理以及作用知道Inception的作用了解卷积神经网络学习过程内容应用应用:使用pre_trained模型进行VGG预测LeNet-5解析...
2022-04-15 21:43:45 1198
原创 案例:使用pre_trained模型进行VGG
Goole在提供VGG进行预测时效果会更好一些,所以选择使用VGG来进行测试在tensorflow,keras.applications存在很多的模型Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1 VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2 VGG19 549 71.3% 90.0% 143.7M 19
2022-04-15 21:41:54 1047
原创 深度学习正则化
目录tensorflow2.keras深度学习正则化解决方法对于高方差,有以下几种方式:获取更多的数据,使得训练能够包含所有可能出现的情况·正则化(Regularization) 寻找更合适的网络结构对于高偏差,有以下几种方式:扩大网络规模,如添加隐藏层或者神经元数量 寻找合适的网络架构,使用更大的网络结构,如AlexNet·训练时间更长一些不断尝试,直到找到低偏差、低方差的框架。正则化项的理解:keras.layers.Conv.
2022-04-15 17:21:23 1339
原创 tensorflow卷积神经网络实战----验证码识别
tensorflow2交叉熵的计算读取图片数据:def read_pic(): """ 读取图片数据 return filename_batch, image_b """ # 1. 构造文件名队列 # 获取文件名列表 file_names = glob.glob("./data/GenPics/*.jpg") # print("file_names:\n", file_names) ...
2022-04-14 16:15:46 503 2
原创 keras对数据集cifar100实现卷积神经网络识别
model = keras.models.Sequential([ # 卷积层1; 32个5*5*3的filter keras.layers.Conv2D(32, kernel_size=5, strides=1, padding="same", data_format="channels_last", activation=tf.compat.v1.nn.relu), # 池化层1;2*2窗口 keras...
2022-04-13 21:11:54 702
TA创建的收藏夹 TA关注的收藏夹
TA关注的人