日萌社
人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)
mongodb:安装cmake、mongodb、mongodb的C驱动、C++驱动
链接:https://pan.baidu.com/s/19R-SdGCy8klKjYQhckGTew
提取码:ug14
ubuntu安装neo4j
1.下载:https://neo4j.com/download-center/#community
2.安装neo4j-community-3.5.18
tar -xzvf neo4j-community-3.5.18-unix.tar.gz
cd ./neo4j-community-3.5.18
3.配置 vim ./neo4j-community-3.5.18/conf/neo4j.conf
注意:现在文件中先搜索对应的属性名,如果被注释掉的话则可以直接增加,如果属性没被注释的话则可以对其进行修改
# 数据库的存储库存储位置、日志位置等
dbms.directories.data=data
dbms.directories.plugins=plugins
dbms.directories.certificates=certificates
dbms.directories.logs=logs
dbms.directories.lib=lib
dbms.directories.run=run
# 导入的位置
dbms.directories.import=import
# 初始化内存大小
dbms.memory.heap.initial_size=512m
# Bolt 连接地址
dbms.connector.bolt.enabled=true
dbms.connector.bolt.tls_level=OPTIONAL
dbms.connector.bolt.listen_address=0.0.0.0:7687
dbms.connector.http.enabled=true
dbms.connector.http.listen_address=0.0.0.0:7474
dbms.connector.https.enabled=true
dbms.connector.https.listen_address=0.0.0.0:7473
4.JDK1.8 下载安装
1.下载:https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
2.卸载自带的OpenJDK方法 sudo apt-get remove openjdk*
3.安装 JDK 1.8
sudo mkdir /usr/local/java
sudo tar zxvf jdk-8u251-linux-x64.tar.gz -C /usr/local/java
cd /usr/local/java/jdk1.8.0_251/bin
./java -version
4.vim ~/.bashrc
1.在文件末尾添加以下内容:
#set java environment
JAVA_HOME=/usr/local/java/jdk1.8.0_251
CLASSPATH=.:$JAVA_HOME/lib/tools.jar
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME CLASSPATH PATH
2.重新加载profile配置文件,让配置文件生效:source ~/.bashrc
3.检查是否已配置好新的JDK:java -version
5.启动neo4j
cd ./neo4j-community-3.5.18/bin
./neo4j start
ps aux|grep neo4j
6.浏览器访问使用
neo4j的可视化管理后台登陆:192.168.88.26:7474
ConnectURL bolt:192.168.88.26:7687
Username: neo4j
Password: neo4j (默认)
centos安装neo4j
- neo4j图数据库的安装流程:
- 第一步: 将neo4j安装信息载入到yum检索列表.
- 第二步: 使用yum install命令安装.
- 第三步: 修改配置文件内容 /etc/neo4j/neo4j.conf.
- 第四步: 启动neo4j数据库.
- 第一步: 将neo4j安装信息载入到yum检索列表
cd /tmp
wget http://debian.neo4j.org/neotechnology.gpg.key
rpm --import neotechnology.gpg.key
cat <<EOF> /etc/yum.repos.d/neo4j.repo
# 写入下面内容
[neo4j]
name=Neo4j RPM Repository
baseurl=http://yum.neo4j.org/stable
enabled=1
gpgcheck=1
EOF
- 第二步: 使用yum install命令安装
yum install neo4j-3.3.5
- 第三步: 修改配置文件默认在/etc/neo4j/neo4j.conf, 为了方便显示下面把一些修改显示在这里
# 数据库的存储库存储位置、日志位置等
dbms.directories.data=/var/lib/neo4j/data
dbms.directories.plugins=/var/lib/neo4j/plugins
dbms.directories.certificates=/var/lib/neo4j/certificates
dbms.directories.logs=/var/log/neo4j
dbms.directories.lib=/usr/share/neo4j/lib
dbms.directories.run=/var/run/neo4j
# 导入的位置
dbms.directories.import=/var/lib/neo4j/import
# 初始化内存大小
dbms.memory.heap.initial_size=512m
# Bolt 连接地址
dbms.connector.bolt.enabled=true
dbms.connector.bolt.tls_level=OPTIONAL
dbms.connector.bolt.listen_address=0.0.0.0:7687
- 第四步: 启动neo4j数据库
# 启动命令
neo4j start
# 终端显示如下, 代表启动成功
Active database: graph.db
Directories in use:
home: /usr/neo4j
config: /etc/neo4j
logs: /var/log/neo4j
plugins: /var/lib/neo4j/plugins
import: /var/lib/neo4j/import
data: /var/lib/neo4j/data
certificates: /var/lib/neo4j/certificates
run: /var/run/neo4j
Starting Neo4j.
- neo4j的可视化管理后台登陆:
- 访问地址: http://0.0.0.0:7474.
- ConnectURL: bolt://0.0.0.0:7687
- Username: neo4j
- Password: neo4j (默认)
Cypher介绍与使用
- 学习目标
- 了解Cypher的基本概念.
- 掌握Cypher的基本命令和语法.
- Cypher的基本概念:
- Cypher是neo4j图数据的查询语言, 类似于mysql数据库的sql语句, 但是它允许对图形进行富有表现力和有效的查询和更新.
- Cypher的基本命令和语法:
- create命令
- match命令
- merge命令
- relationship关系命令
- where命令
- delete命令
- sort命令
- 字符串函数
- 聚合函数
- index索引命令
- create命令: 创建图数据中的节点.
- 演示:
# 创建命令格式:
# 此处create是关键字, 创建节点名称node_name, 节点标签Node_Label, 放在小括号里面()
# 后面把所有属于节点标签的属性放在大括号'{}'里面, 依次写出属性名称:属性值, 不同属性用逗号','分隔
# 例如下面命令创建一个节点e, 节点标签是Employee, 拥有id, name, salary, deptnp四个属性:
CREATE (e:Employee{id:222, name:'Bob', salary:6000, deptnp:12})
- 效果
- match命令: 匹配(查询)已有数据.
- 演示:
# match命令专门用来匹配查询, 节点名称:节点标签, 依然放在小括号内, 然后使用return语句返回查询结果, 和SQL很相似.
MATCH (e:Employee) RETURN e.id, e.name, e.salary, e.deptno
- 效果:
- merge命令: 若节点存在, 则等效与match命令; 节点不存在, 则等效于create命令.
- 演示:
MERGE (e:Employee {id:146, name:'Lucer', salary:3500, deptno:16})
- 效果:
- 然后再次用merge查询, 发现数据库中的数据并没有增加, 因为已经存在相同的数据了, merge匹配成功.
- 演示:
MERGE (e:Employee {id:146, name:'Lucer', salary:3500, deptno:16})
- 效果:
- 使用create创建关系: 必须创建有方向性的关系, 否则报错.
- 演示:
# 创建一个节点p1到p2的有方向关系, 这个关系r的标签为Buy, 代表p1购买了p2, 方向为p1指向p2
CREATE (p1:Profile1)-[r:Buy]->(p2:Profile2)
- 效果:
- 使用merge创建关系: 可以创建有/无方向性的关系.
- 演示:
# 创建一个节点p1到p2的无方向关系, 这个关系r的标签为miss, 代表p1-miss-p2, 方向为相互的
MERGE (p1:Profile1)-[r:miss]-(p2:Profile2)
- 效果:
- where命令: 类似于SQL中的添加查询条件.
- 演示:
# 查询节点Employee中, id值等于123的那个节点
MATCH (e:Employee) WHERE e.id=123 RETURN e
- 效果:
- delete命令: 删除节点/关系及其关联的属性.
- 演示:
# 注意: 删除节点的同时, 也要删除关联的关系边
MATCH (c1:CreditCard)-[r]-(c2:Customer) DELETE c1, r, c2
- 效果:
- sort命令: Cypher命令中的排序使用的是order by.
- 演示:
# 匹配查询标签Employee, 将所有匹配结果按照id值升序排列后返回结果
MATCH (e:Employee) RETURN e.id, e.name, e.salary, e.deptno ORDER BY e.id
# 如果要按照降序排序, 只需要将ORDER BY e.salary改写为ORDER BY e.salary DESC
MATCH (e:Employee) RETURN e.id, e.name, e.salary, e.deptno ORDER BY e.salary DESC
- 效果:
- 字符串函数:
- toUpper()函数
- toLower()函数
- substring()函数
- replace()函数
- toUpper()函数: 将一个输入字符串转换为大写字母.
- 演示:
MATCH (e:Employee) RETURN e.id, toUpper(e.name), e.salary, e.deptno
- 效果:
- toLower()函数: 讲一个输入字符串转换为小写字母.
- 演示:
MATCH (e:Employee) RETURN e.id, toLower(e.name), e.salary, e.deptno
- 效果:
- substring()函数: 返回一个子字符串.
- 演示:
# 输入字符串为input_str, 返回从索引start_index开始, 到end_index-1结束的子字符串
substring(input_str, start_index, end_index)
# 示例代码, 返回员工名字的前两个字母
MATCH (e:Employee) RETURN e.id, substring(e.name,0,2), e.salary, e.deptno
- 效果:
- replace()函数: 替换掉子字符串.
- 演示:
# 输入字符串为input_str, 将输入字符串中符合origin_str的部分, 替换成new_str
replace(input_str, origin_str, new_str)
# 示例代码, 将员工名字替换为添加后缀_HelloWorld
MATCH (e:Employee) RETURN e.id, replace(e.name,e.name,e.name + "_HelloWorld"), e.salary, e.deptno
- 效果:
- 聚合函数
- count()函数
- max()函数
- min()函数
- sum()函数
- avg()函数
- count()函数: 返回由match命令匹配成功的条数.
- 演示:
# 返回匹配标签Employee成功的记录个数
MATCH (e:Employee) RETURN count( * )
- 效果:
- max()函数: 返回由match命令匹配成功的记录中的最大值.
- 演示:
# 返回匹配标签Employee成功的记录中, 最高的工资数字
MATCH (e:Employee) RETURN max(e.salary)
- 效果:
- min()函数: 返回由match命令匹配成功的记录中的最小值.
- 演示:
# 返回匹配标签Employee成功的记录中, 最低的工资数字
MATCH (e:Employee) RETURN min(e.salary)
- 效果:
- sum()函数: 返回由match命令匹配成功的记录中某字段的全部加和值.
- 演示:
# 返回匹配标签Employee成功的记录中, 所有员工工资的和
MATCH (e:Employee) RETURN sum(e.salary)
- 效果:
- avg()函数: 返回由match命令匹配成功的记录中某字段的平均值.
- 演示:
# 返回匹配标签Employee成功的记录中, 所有员工工资的平均值
MATCH (e:Employee) RETURN avg(e.salary)
- 效果:
- 索引index
- Neo4j支持在节点或关系属性上的索引, 以提高查询的性能.
- 可以为具有相同标签名称的所有节点的属性创建索引.
- 创建索引: 使用create index on来创建索引.
- 演示:
# 创建节点Employee上面属性id的索引
CREATE INDEX ON:Employee(id)
- 效果:
- 删除索引: 使用drop index on来删除索引.
- 演示:
# 删除节点Employee上面属性id的索引
DROP INDEX ON:Employee(id)
- 效果:
-
小节总结:
- 学习了Cypher的基本概念:
- Cypher是neo4j图数据的查询语言, 类似于mysql数据库的sql语句, 但是它允许对图形进行富有表现力和有效的查询和更新.
- Cypher的基本命令和语法:
- create命令
- match命令
- merge命令
- relationship关系命令
- where命令
- delete命令
- sort命令
- 字符串函数
- 聚合函数
- index索引命令
- create命令: 创建图数据中的节点.
- CREATE (e:Employee{id:222, name:'Bob', salary:6000, deptnp:12})
- match命令: 匹配(查询)已有数据.
- MATCH (e:Employee) RETURN e.id, e.name, e.salary, e.deptno
- merge命令: 若节点存在, 则等效与match命令; 节点不存在, 则等效于create命令.
- MERGE (e:Employee {id:145, name:'Lucy', salary:7500, deptno:12})
- 使用create创建关系: 必须创建有方向性的关系, 否则报错.
- CREATE (p1:Profile1)-[r:Buy]->(p2:Profile2)
- 使用merge创建关系: 可以创建有/无方向性的关系.
- MERGE (p1:Profile1)-[r:miss]-(p2:Profile2)
- where命令: 类似于SQL中的添加查询条件.
- MATCH (e:Employee) WHERE e.id=123 RETURN e
- delete命令: 删除节点/关系及其关联的属性.
- MATCH (c1:CreditCard)-[r]-(c2:Customer) DELETE c1, r, c2
- sort命令: Cypher命令中的排序使用的是order by.
- MATCH (e:Employee) RETURN e.id, e.name, e.salary, e.deptno ORDER BY e.id
- 字符串函数:
- toUpper()函数
- toLower()函数
- substring()函数
- replace()函数
- toUpper()函数: 将一个输入字符串转换为大写字母.
- MATCH (e:Employee) RETURN e.id, toUpper(e.name), e.salary, e.deptno
- toLower()函数: 讲一个输入字符串转换为小写字母.
- MATCH (e:Employee) RETURN e.id, toLower(e.name), e.salary, e.deptno
- substring()函数: 返回一个子字符串.
- MATCH (e:Employee) RETURN e.id, substring(e.name,0,2), e.salary, e.deptno
- replace()函数: 替换掉子字符串.
- MATCH (e:Employee) RETURN e.id, replace(e.name,e.name,e.name + "_HelloWorld"), e.salary, e.deptno
- 聚合函数
- count()函数
- max()函数
- min()函数
- sum()函数
- avg()函数
- count()函数: 返回由match命令匹配成功的条数.
- MATCH (e:Employee) RETURN count( * )
- max()函数: 返回由match命令匹配成功的记录中的最大值.
- MATCH (e:Employee) RETURN max(e.salary)
- min()函数: 返回由match命令匹配成功的记录中的最小值.
- MATCH (e:Employee) RETURN min(e.salary)
- sum()函数: 返回由match命令匹配成功的记录中某字段的全部加和值.
- MATCH (e:Employee) RETURN sum(e.salary)
- avg()函数: 返回由match命令匹配成功的记录中某字段的平均值.
- MATCH (e:Employee) RETURN avg(e.salary)
- 索引index
- Neo4j支持在节点或关系属性上的索引, 以提高查询的性能.
- 可以为具有相同标签名称的所有节点的属性创建索引.
- 创建索引: 使用create index on来创建索引.
- CREATE INDEX ON:Employee(id)
- 删除索引: 使用drop index on来删除索引.
- DROP INDEX ON:Employee(id)
- 学习了Cypher的基本概念:
3.4 在Python中使用neo4j
- 学习目标
- 了解python中neo4j-driver的相关知识.
- 掌握neo4j中事务概念和操作方法.
- neo4j-driver简介:
- neo4j-driver是一个python中的package, 作为python中neo4j的驱动, 帮助我们在python程序中更好的使用图数据库.
- neo4j-driver的安装:
pip install neo4j-driver
- neo4j-driver使用演示:
from neo4j import GraphDatabase
# 关于neo4j数据库的用户名,密码信息已经配置在同目录下的config.py文件中
from config import NEO4J_CONFIG
driver = GraphDatabase.driver( **NEO4J_CONFIG)
# 直接用python代码形式访问节点Company, 并返回所有节点信息
with driver.session() as session:
cypher = "CREATE(c:Company) SET c.name='程序员' RETURN c.name"
record = session.run(cypher)
result = list(map(lambda x: x[0], record))
print("result:", result)
- 输出效果:
result: 程序员
- 事务的概念:
- 如果一组数据库操作要么全部发生要么一步也不执行,我们称该组处理步骤为一个事务, 它是数据库一致性的保证.
- 使用事务的演示:
def _some_operations(tx, cat_name, mouse_name):
tx.run("MERGE (a:Cat{name: $cat_name})"
"MERGE (b:Mouse{name: $mouse_name})"
"MERGE (a)-[r:And]-(b)",
cat_name=cat_name, mouse_name=mouse_name)
with driver.session() as session:
session.write_transaction(_some_operations, "Tom", "Jerry")
- 输出效果: