weka
文章平均质量分 65
根号四等于二
根号四二不二
展开
-
Linux下启动weka出现Error, not in CLASSPATH?解决方案
Linux下启动weka出现Error, not in CLASSPATH?解决方案[日期:2013-03-06]来源:Linux社区 作者:斌斌[字体:大 中 小]这里说说Linux下weka的安装及出现的主要问题。 首先,下载weka的稳定版本weka-3-6-8.zip(下载见 http://pan.baidu.com转载 2015-11-13 22:42:13 · 399 阅读 · 0 评论 -
关于weka文件不能保存的问题
学习weka 的过程中遇到文件不能保存的问题,无论是arff还是xml等文件都不能保存在weka 的默认存储路径中。可以选择把arff等文件保存在Desktop或者tmp文件夹中,之后可以保存并顺利调用。原创 2015-11-16 20:31:53 · 709 阅读 · 0 评论 -
Weka3-8安装libsvm
参考文章如下。http://nudtgk2000.iteye.com/blog/2070604最开始的启发,使用weka3-7之后自带的tools目录下的package manager找到libSVM,左键选中,单击install安装。安装完成后在explorer-classify-classifier-functions中会出现libSVM。默认安装weka3-8不会自带libS原创 2016-05-04 22:22:56 · 3414 阅读 · 0 评论 -
Precision和Recall
原文出自:http://blog.csdn.net/wangran51/article/details/7579100最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到,知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。召回率:Recall,又称“查全率”转载 2016-05-17 12:46:11 · 365 阅读 · 0 评论 -
混淆矩阵(confusion matrix)
一个完美的分类模型是,将实际上是good的实例预测成good,将bad的实例预测称bad。对于实际应用中的分类模型,可能预测错误实例类型,因此我们需要知道到底预测对了多少实例,预测错了多少实例。混淆矩阵就是将这些信息放在一个表中,便于直观的观测和分析。 在分类问题中,预测的情形存在如下四种:1. good—》good: true positive类型, 设数目为a;转载 2016-05-17 12:46:44 · 5314 阅读 · 0 评论 -
ROC曲线-阈值评价标准
ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近转载 2016-05-17 12:47:32 · 428 阅读 · 0 评论