零基础入门数据挖掘-Task2数据分析

主要内容

EDA数据探索性分析:了解数据,熟悉数据。

赛题

零基础入门数据挖掘 - 二手车交易价格预测。
链接:零基础入门数据挖掘 - 二手车交易价格预测

EDA目标

  • EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证,来确定所获得的数据集可以用于接下来的机器学习或深度学习
  • 了解了数据集之后,要去了解变量间的相互关系以及变量和预测值之间的存在关系
  • 引导数据科学从业者进行数据处理以及特征工程的步骤,数据集的结构和特征集使接下来的预测问题更加可靠。
  • 完成对于数据的探索性分析,并对于数据进行一些图表或文字总结。

内容介绍

  1. 载入各种数据科学以及可视化库:
    (1)数据科学库 pandas、numpy、scipy;
    (2)可视化库 matplotlib、seabon;
    (3)其他。
  2. 载入数据:
    (1)载入训练集和测试集;
    (2)简略观察数据(head[] + shape)。
  3. 数据总览:
    (1)通过describe()来熟悉数据的相关统计量;
    (2)通过info()来熟悉数据类型。
  4. 判断数据缺失和异常:
    (1)查看每列的存在NaN情况;
    (2)异常值检测。
  5. 了解预测值的分布:
    (1)总体分布概况(无界约翰逊分布等);
    (2)查看skewness and kurtosis;
    (3)查看预测值的具体频数。
  6. 特征分为类别特征和数字特征,并对类别特征查看unique分布
  7. 数字特征分析
    (1)相关性分析;
    (2)查看几个特征的偏度和峰值;
    (3)每个数字特征的分布可视化;
    (4)数字特征之间的关系可视化;
    (5)多变量互相回归关系可视化。
  8. 类型特征分布
    (1)unique分布;
    (2)类别特征箱型图可视化;
    (3)类别特征的小提琴图可视化
    (4)类别特征的柱形图可视化类别
    (5)特征的每个类别频数可视化(count_plot)
  9. 用pandas_profiling生成数据报告

代码

载入各种数据科学及可视化库

#coding:utf-8
#导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

载入数据

##1.载入训练集和测试集;
path = './used_car_data/'
Train_data = pd.read_csv(path + 'used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv(path + 'used_car_testA_20200313.csv', sep=' ')

简略观察数据

print('Train data shape: ',Train_data.shape)
print('Test data shape: ',Test_data.shape)
print(Train_data.head().append(Train_data.tail()))
print(Test_data.head().append(Test_data.tail()))

输出:

输出结果

总览数据概况

  1. describe中有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25%、50%、75%,以及最大值。看这些信息主要是瞬间掌握数据的大致范围以及每个值得异常值的判断,比如有的时候会发现9999999-1等这些值都是NaN的另外一种表达方式。
  2. info中有每列的type,有助于链接是否存在除了NaN以外的特殊符号异常。
# 1)通过describe()来熟悉数据的相关统计量
print(Train_data.describe())
print(Test_data.describe())
## 2) 通过info()来熟悉数据类型
print(Train_data.info())
print(Test_data.info())

判断数据缺失和异常

直观了解哪些列存在 “NaN”, 并可以把NaN的个数打印,主要目的在于判断NaN存在的个数是否很大,如果很小一般选择填充,如果使用lgb等树模型可以直接空缺,让树自己去优化,但如果NaN存在的过多,可以考虑删掉。

#1)查看每列存在NaN的情况
print(Train_data.isnull().sum())
print(Test_data.isnull().sum())
#2)NaN可视化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()
#3)可视化缺省值
msno.matrix(Train_data.sample(250))
plt.show()
msno.bar(Train_data.sample(1000))
plt.show()
msno.matrix(Test_data.sample(250))
plt.show()
msno.bar(Test_data.sample(1000))
plt.show()
##4)查看异常值检测
print(Train_data['notRepairedDamage'].value_counts())
Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
print(Test_data['notRepairedDamage'].value_counts())
Test_data['notRepairedDamage'].replace('-', np.nan, inplace=True)

以下两个类别特征严重倾斜,一般不会对预测有什么帮助,因此可以删掉。

print(Train_data["seller"].value_counts())
print(Train_data["offerType"].value_counts())
del Train_data["seller"]
del Train_data["offerType"]
del Test_data["seller"]
del Test_data["offerType"]

了解预测值的分布

print(Train_data['price'])
print(Train_data['price'].value_counts())
## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
plt.show()

输出:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

价格不服从正态分布,所以在进行回归之前,它必须进行转换。虽然对数变换做得很好,但最佳拟合是无界约翰逊分布。

##2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
plt.show()
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
print(Train_data.skew())
print(Train_data.kurt())
sns.distplot(Train_data.skew(),color='blue',axlabel ='Skewness')
plt.show()
sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')
plt.show()
##3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()
# log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

补充介绍:
偏度(skewness):
偏度是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性,简单来说就是数据的不对称程度。
偏度是三阶中心矩计算出来的。
(1)Skewness = 0 ,分布形态与正态分布偏度相同。
(2)Skewness > 0 ,正偏差数值较大,为正偏或右偏。长尾巴拖在右边,数据右端有较多的极端值。
(3)Skewness < 0 ,负偏差数值较大,为负偏或左偏。长尾巴拖在左边,数据左端有较多的极端值。
(4)数值的绝对值越大,表明数据分布越不对称,偏斜程度大。
计算公式:
S k e w n e s s = E [ ( ( x − E ( x ) ) / ( D ( x ) ) ) 3 ] Skewness=E[((x-E(x))/(\sqrt{D(x)}))^3] Skewness=E[((xE(x))/(D(x) ))3]
峰度(kurtosis)
峰度是描述某变量所有取值分布形态陡缓程度的统计量,简单来说就是数据分布顶的尖锐程度。
峰度是四阶标准矩计算出来的。
(1)Kurtosis=0 与正态分布的陡缓程度相同。
(2)Kurtosis>0 比正态分布的高峰更加陡峭——尖顶峰。
(3)Kurtosis<0 比正态分布的高峰来得平台——平顶峰。
计算公式:
K u r t o s i s = E [ ( ( x − E ( x ) ) / ( ( D ( x ) ) ) ) 4 ] − 3 Kurtosis=E[ ( (x-E(x))/ (\sqrt(D(x))) )^4 ]-3 Kurtosis=E[((xE(x))/(( D(x))))4]3

对类别特征查看unique分布

# 分离label即预测值
Y_train = Train_data['price']
# 这个区别方式适用于没有直接label coding的数据
# 这里不适用,需要人为根据实际含义来区分
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns
numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]
categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]
# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())
# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
    print(Test_data[cat_fea].value_counts())

数字特征分析

numeric_features.append('price')
##1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)
plt.show()
del price_numeric['price']
## 2) 查看几个特征得 偏度和峰值
for col in numeric_features:
    print('{:15}'.format(col),
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) ,
          '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())
         )
## 3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()
## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)

v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)

v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)

power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)

v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)

v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)

v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)

v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)

v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)

v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

类别特征分析

## 1) unique分布
for fea in categorical_features:
    print(Train_data[fea].nunique())
## 2) 类别特征箱形图可视化
# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
        Train_data[c] = Train_data[c].fillna('MISSING')

def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")
## 3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
    sns.violinplot(x=catg, y=target, data=Train_data)
    plt.show()
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
## 4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
    sns.barplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")
##  5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x,  **kwargs):
    sns.countplot(x=x)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

用pandas_profiling生成数据报告

用pandas_profiling生成一个较为全面的可视化和数据报告(较为简单、方便) 最终打开html文件即可。


经验总结

所给出的EDA步骤为广为普遍的步骤,在实际的不管是工程还是比赛过程中,这只是最开始的一步,也是最基本的一步。

接下来一般要结合模型的效果以及特征工程等来分析数据的实际建模情况,根据自己的一些理解,查阅文献,对实际问题做出判断和深入的理解。

最后不断进行EDA与数据处理和挖掘,来到达更好的数据结构和分布以及较为强势相关的特征。
数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis):

是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。

数据探索有利于发现数据的一些特性,数据之间的关联性,对于后续的特征构建是很有帮助的。

  1. 对于数据的初步分析(直接查看数据,或.sum(), .mean(),.descirbe()等统计函数)可以从:样本数量,训练集数量,是否有时间特征,是否是时序问题,特征所表示的含义(非匿名特征),特征类型(字符类似,int,float,time),特征的缺失情况(注意缺失在数据中的表现形式,有些是空,有些是”NAN”符号等),特征的均值方差情况。

  2. 分析记录某些特征值缺失占比30%以上的样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型去预测。

  3. 对于异常值做专门的分析,分析特征异常的label是否为异常值(或者偏离均值较远或者事特殊符号),异常值是否应该剔除,还是用正常值填充,是记录异常,还是机器本身异常等。

  4. 对于Label做专门的分析,分析标签的分布情况等。

  5. 进一步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性。

本节结论总结

  1. Train data shape: (150000, 31)
  2. Test data shape: (50000, 30)
    (比训练集少了待预测的价格列。
  3. notRepairedDamage列类型为object,其他列为数字。将notRepairedDamage中的‘-’替换为NaN。
  4. 去除严重倾斜的两个类别特征seller和offerType。
  5. 价格不服从正态分布,所以在进行回归之前,它必须进行转换。虽然对数变换做得很好,但最佳拟合是无界约翰逊分布。
  6. 匿名特征分布相对均匀。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值