取模判根
题解:http://www.cnblogs.com/JSZX11556/p/4907703.html
注意到 f(x) mod p = f(x%p) mod p. 所以枚举0~p-1即可
为什么要取模素数?
质数模不容易冲突啊,这个很自然,如果取多个模,碰撞概率是lcm所有的模数,要是不是质数,lcm会变小,质数的话lcm就是全部乘起来,显然最优。
我是智障
f不能只开一维
因为对于一个X
f(x mod pi) mod pi在不同pi的取模之下答案不一样
做到后面的pi会覆盖前面的pi的结果
#include<cstdio>
#include<cstring>
#include<algorithm>
#define L 10005
#define N 105
#define M 1000005
#define ll long long
using namespace std;
int prime[10]={9973,9931,9941,9949,9967,9833,9839,9851,9857,9859}, pcnt=9, a[N], f[10][10000], print[M];
char s[N][L];
bool idx[N];
int main()
{
int n, m, ans=0;
scanf("%d%d",&n,&m);
for(int i = 0; i <= n; i++)
{
scanf("%s",s[i]);
if(s[i][0]=='-')idx[i]=1, s[i][0]='0';
}
for(int p = 0; p <= pcnt; p++)
{
for(int i = 0; i <= n; i++)
{
a[i]=0;
for(int j = 0, jj = strlen(s[i]); j < jj; j++)
a[i]=(a[i]*10+(s[i][j]-'0'))%prime[p];
if(idx[i])a[i]=prime[p]-a[i];
}
for(int i = 0, ii = min(m,prime[p]-1); i <= ii; i++)
{
ll x = 1;
for(int j = 0; j <= n; j++)
{
f[p][i]=(f[p][i]+a[j]*x%prime[p])%prime[p];
x=(x*i)%prime[p];
}
}
}
for(int i = 1; i <= m; i++)
{
bool flag=1;
for(int j = 0; j <= pcnt && flag; j++)
if(f[j][i%prime[j]])
flag=0;
if(flag)
{
ans++;
print[ans]=i;
}
}
printf("%d\n",ans);
for(int i = 1; i <= ans; i++)
printf("%d\n",print[i]);
}