UOJ 20 [NOIP2014]解方程

取模判根

题解:http://www.cnblogs.com/JSZX11556/p/4907703.html

注意到 f(x) mod p = f(x%p) mod p. 所以枚举0~p-1即可

为什么要取模素数?
质数模不容易冲突啊,这个很自然,如果取多个模,碰撞概率是lcm所有的模数,要是不是质数,lcm会变小,质数的话lcm就是全部乘起来,显然最优。

我是智障
f不能只开一维
因为对于一个X
f(x mod pi) mod pi在不同pi的取模之下答案不一样
做到后面的pi会覆盖前面的pi的结果

#include<cstdio>
#include<cstring>
#include<algorithm>
#define L 10005 
#define N 105
#define M 1000005
#define ll long long
using namespace std;
int prime[10]={9973,9931,9941,9949,9967,9833,9839,9851,9857,9859}, pcnt=9, a[N], f[10][10000], print[M];
char s[N][L];
bool idx[N];
int main()
{
    int n, m, ans=0;
    scanf("%d%d",&n,&m);
    for(int i = 0; i <= n; i++)
    {
        scanf("%s",s[i]);
        if(s[i][0]=='-')idx[i]=1, s[i][0]='0';
    }
    for(int p = 0; p <= pcnt; p++)
    {
        for(int i = 0; i <= n; i++)
        {
            a[i]=0;
            for(int j = 0, jj = strlen(s[i]); j < jj; j++)
                a[i]=(a[i]*10+(s[i][j]-'0'))%prime[p];
            if(idx[i])a[i]=prime[p]-a[i];
        }

        for(int i = 0, ii = min(m,prime[p]-1); i <= ii; i++)
        {
            ll x = 1;
            for(int j = 0; j <= n; j++)
            {
                f[p][i]=(f[p][i]+a[j]*x%prime[p])%prime[p];
                x=(x*i)%prime[p];
            }
        }
    }
    for(int i = 1; i <= m; i++)
    {
        bool flag=1;
        for(int j = 0; j <= pcnt && flag; j++)
            if(f[j][i%prime[j]])
                flag=0;
        if(flag)
        {
            ans++;
            print[ans]=i;
        }
    }
    printf("%d\n",ans);
    for(int i = 1; i <= ans; i++)
        printf("%d\n",print[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值