PVE多卡添加VLAN简单教程

新手建议安装ifupdown2或者openvswitch-switch可以使用web操作,简单一些

废话不多说,直接上配置
多网卡建立bond

auto lo
iface lo inet loopback

auto eno1
iface eno1 inet manual

auto eno2
iface eno2 inet manual

auto bond0
iface bond0 inet manual
	bond-slaves eno1 eno2
	bond-miimon 100
	bond-mode balance-alb      #此处严谨说明下,如果你的交换机支持动态聚合,那就使用802.3ad模式

auto bond0.70 					#vlan70
iface bond0.70 inet manual

auto bond0.254					#vlan254
iface bond0.254 inet manual

auto vmbr0						#默认接口作为空白建接口
iface vmbr0 inet manual
	bridge-ports bond0
	bridge-stp off
	bridge-fd 0

auto vmbr1
iface vmbr1 inet static
	address 10.0.0.2/29
	bridge-ports bond0.254
	bridge-stp off
	bridge-fd 0
#服务器管理接口

auto vmbr2
iface vmbr2 inet static
	address 11.0.0.2/24
	gateway 11.0.0.1
	bridge-ports bond0.70
	bridge-stp off
	bridge-fd 0
#虚拟机专用


单卡其实就是将基于bond配置删除,基于网卡就行.

web界面创建只需要注意创建都是基于某个存在的网卡的.
VLAN创建

Huggingface是一个开源的自然语言处理(NLP)库,提供了许多用于处理文本数据的工具和模型。多卡加载是指在使用Huggingface库加载和训练模型时,同时利用多个GPU卡进行计算加速。 在Huggingface中,可以使用`torch.nn.DataParallel`或`torch.nn.DistributedDataParallel`来实现多卡加载。这两个类都是PyTorch中用于并行计算的工具。 使用`torch.nn.DataParallel`时,可以通过以下步骤实现多卡加载: 1. 导入所需的库和模型。 2. 创建模型实例。 3. 使用`torch.nn.DataParallel`将模型包装起来,指定需要使用的GPU卡。 4. 将数据传递给模型进行训练或推理。 以下是一个示例代码: ```python import torch from torch import nn from transformers import BertModel # 导入所需的库和模型 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BertModel.from_pretrained('bert-base-uncased') # 创建模型实例 model = model.to(device) # 使用torch.nn.DataParallel将模型包装起来,指定需要使用的GPU卡 model = nn.DataParallel(model) # 将数据传递给模型进行训练或推理 inputs = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(device) outputs = model(inputs) ``` 使用`torch.nn.DistributedDataParallel`时,可以通过以下步骤实现多卡加载: 1. 导入所需的库和模型。 2. 创建模型实例。 3. 使用`torch.nn.DistributedDataParallel`将模型包装起来,指定需要使用的GPU卡。 4. 设置分布式训练环境。 5. 将数据传递给模型进行训练或推理。 以下是一个示例代码: ```python import torch from torch import nn from torch.nn.parallel import DistributedDataParallel from transformers import BertModel # 导入所需的库和模型 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BertModel.from_pretrained('bert-base-uncased') # 创建模型实例 model = model.to(device) # 使用torch.nn.DistributedDataParallel将模型包装起来,指定需要使用的GPU卡 model = DistributedDataParallel(model) # 设置分布式训练环境 torch.distributed.init_process_group(backend='nccl') # 将数据传递给模型进行训练或推理 inputs = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(device) outputs = model(inputs) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值