Adversarial Knowledge Transfer from Unlabeled Data翻译

在这里插入图片描述

虽然机器学习方法在视觉识别中有很大的应用前景,但大多数现有的方法严重依赖于大量标记训练数据的可用性。然而,在绝大多数真实世界的设置中,由于标记数据的成本或给定域中数据的稀少,手动收集这样大的标记数据集是不可行的。在本文中,我们提出了一个新颖的对抗式知识转移(Adversarial Knowledge Transfer, AKT)框架,用于从互联网规模的未标记数据中转移知识,以提高分类器在给定视觉识别任务上的性能。提出的对抗学习框架将未标记源数据的特征空间与标记目标数据对齐,使得目标分类器可以用于预测源数据上的伪标签。该方法的一个重要创新之处在于,未标记的源数据可以与标记的目标数据属于不同的类别,并且不需要定义一个单独的借口任务,这与现有的一些方法不同。大量的实验很好地证明了使用我们的方法学习的模型在多个标准数据集上的各种视觉识别任务中具有很大的前景。项目页面位于链接: link

在这里插入图片描述
图一: 不同学习框架的比较。我们提出的对抗知识转移(AKT)方法将知识从未标记的源数据转移到标记的目标数据集,而不要求它们具有相同的分布或标签空间。颜色最好看(best viewed in color 嘛意思?效果最好? 让我决定翻译这个论文的就是这张图,概括的非常明了,各个大领域之间的区别)。

深度学习方法最近在许多视觉任务上表现出了令人印象深刻的性能,因为它利用了大量的标记数据集合。然而,这样强大的性能是以创建这些大型数据集为代价的,这通常需要大量的人工工作来手动标记样本。近年来,针对tar-get领域缺乏标记数据的问题,在迁移学习[31,35,49],无监督域自适应[11,29,30]和半监督学习[1,3,14,23,32,42,43,45,45,54]等方面取得了很大进展。虽然这些方法在许多任务中被证明是有效的,但它们通常依赖于大规模人工数据的存在来训练源模型[50](在迁移学习的情况下:1

图1)或假设未标记数据来自具有某些域间隙的类似分布(例如,在无监督域自适应的情况下跨动画图像和真实图像:图1a)或假设未标记数据来自具有某些域间隙的类似分布(例如,在无监督域自适应的情况下跨动画图像和真实图像)。1b)或具有与标记数据相同的数据和标记分布(在半监督学习的情况下:图1b)或具有与标记数据相同的数据和标记分布(在半监督学习的情况下:图1b)。1c)。另一方面,自学学习或自监督学习[6,17,27,34,40,47]方法可以使用未标记的源数据将知识传递给目标任务,这些源数据可能与目标任务的分布不相同,标签空间也不相同。特别地,未标记的数据首先用于使用托辞任务学习特征表示,然后通过精细调整使所学习的特征适应于目标标记的数据集。然而,尽管它们的性能合理,但如何针对特定的下游任务设计高效的托辞任务仍不清楚。定义一个借口任务本身就是一个具有挑战性的问题[19]。

在本文中,我们提出了一个新颖的对抗式知识转移(AKT)框架,用于在不需要定义标签任务的情况下从大规模无标记数据中转移知识。我们的方法将知识从未标记的源数据转移到标记的目标数据,而不要求它们具有相同的分布或标记空间(见图1D)。提出的对抗学习有助于将未标记源数据的特征空间与标记目标数据对齐,使得目标分类器可以用于预测源数据上的伪标记。利用源数据的伪标签,我们与标记的目标数据集联合优化分类器。与其他自我监督方法[34,52]不同,我们不采用两阶段训练,即模型首先在一个借口任务上进行训练,然后在目标任务上进行精细调整。相反,我们的方法就像一个求解器一样操作,它同时用标记和未标记的数据更新模型,使得它高效和方便地使用。

我们的方法的动机是观察到许多随机下载的未标记图像(例如,来自其他对象类的web图像–它们比特定的目标类的图像更容易获得)包含基本的视觉模式(例如边缘,角点),这些模式与目标数据集中的标记图像中的模式相似。因此,我们可以将这些视觉模式从互联网规模的未标记数据中转移出来,用于学习目标任务上的有效分类器。注意,在我们的方法中,源域和目标域可能有某种关系,但是我们并不要求它们具有相同的分布或标签空间,同时从未标记的数据中传递知识.

我们的方法概述如图2所示。我们的目标是在小的标记目标数据和大规模的未标记源数据的情况下,通过利用未标记样本中的相关信息来提高目标分类器的性能,而不是只利用标记目标数据。为此,我们采用对抗性方法训练目标分类器,该分类器由三个模块组成:分类器网络M,伪标签生成器G和鉴别器,D_I用于实例级特征对齐,D_G用于组级特征对齐。注意学习分类器M是我们的主要目标。在我们的方法中,为了训练目标分类器,(1)首先将目标样本输入到分类器网络M中提取特征。(2)将源样本输入到伪标签生成器G中,提取其特征和伪标签。(3)我们使用目标和源样本的特征作为识别器D_I和D_G的输入,来区分实例级和组级输入特征分别来自源域和目标域。实例级鉴别器尝试从源域到目标域对齐单个样本,而组级鉴别器通过考虑特征手段对齐一批源样本和一批目标样本。利用这两个对抗性损失,网络将梯度从D I和D G传播到G,这鼓励源样本在目标域中产生相似的特征分布。(4)最后,我们将目标样本和源样本传递给分类器M,计算带有标签的目标样本和带有伪标签的源样本的分类损失。

总之,我们在这篇论文中提出了一个新颖而实际的问题–如何利用包含在未标记数据中的信息,这些数据不遵循相同的类标记或生成分布
作为标记数据。为解决这一问题,我们作出以下贡献。
(1)提出了一种新的对抗框架,该框架不需要任何明确的借口任务就可以将知识从未标记数据转移到标记数据中,从而提高了知识转移的效率。
(2)我们在多个数据集上进行了大量的实验,结果表明,与现有的方法相比,我们的方法在不需要源域中的任何标记数据的情况下,取得了很好的结果。

RELATED WORK

我们的工作涉及到四个主要的研究方向:

1. 半监督学习(semi-supervised learning),
2. 领域自适应(domain adaptation),
3. 自我训练(self-training )
4. 自学学习(self-taught learning 。

半监督学习

已经从多个角度进行了研究(见综述[4])。许多已有的工作集中于在模型训练中加入正则化器,以防止对标注的示例的过拟合[14,23,42,45]。已经研究了各种策略,包括流形正则化[3],带图形约束的正则化[1]和标号传播[54]。在深度神经网络的背景下,使用梯形网络[3],时间集成[23],随机变换[43],虚拟对抗性训练[32]和均值教师[45]也对半监督学习进行了广泛的研究。现有的半监督方法大多认为未标记数据集与已标记数据集具有相同的分布,但我们并不假设未标记数据与感兴趣的分类任务之间存在任何相关性.(那意思就是半监督学习大概两个数据是同一分布的?)

领域自适应

领域自适应的目的是将知识从已标记的源数据转移到未标记的目标数据,假设两者包含完全相同数量的类[11,29,30]。相比之下,我们的工作集中在知识转移的相反情况,没有对标签空间做任何假设。尽管开放集域自适应[28,36,41]没有考虑完全相同的类,但是它们仍然有一些在源数据和目标数据之间共享的感兴趣的类。相比之下,我们并不要求它们具有相同的分布或共享的标签空间,同时从未标记的数据中传递知识。

自训练

是一种学习范式,它利用一小组标记数据中的信息来估计未标记数据的伪标记。伪标号[2,26]是一种常用的技术,其中首先使用在标号集上训练的模型来预测未标号集的伪标号,并用标号和未标号数据联合训练。然而,如果从已标记实例学习的初始模型过拟合,这可能导致不正确的标记。此外,它还隐含了一个假设,即源样本特征与目标数据很好地对齐,而这个假设可能不是真的。相反,我们的方法没有这样的假设,而是训练一个生成器,通过将源样本特征与目标数据分布对齐来生成更可靠的伪标签。

Self-Taught Learning or Self-Supervised Learning

自学学习或自我监督学习主要是定义一个任务从一个大的未标记集合中学习特征表示,然后在涉及一个小得多的标记集合的目标任务上对学习到的模型进行微调。一些方法定义了去噪自动编码器的任务,即从部分观测数据进行像素级的数据重建[46]。彩色化问题[24,52]也是一个显著的例子,其中任务是在给定其灰度版本的情况下重建彩色图像。图像修补[39]也被用作一个借口任务,其中的目标是在给定周围的情况下预测图像的一个区域。解决拼图问题[33]或其变体[34]已被用作从未标记数据中学习视觉特征的托辞任务。然而,为某些应用程序定义借口任务本身就是一个具有挑战性的问题[19]。虽然我们的方法与自学学习有关,但与现有的工作通常采用两阶段训练不同,我们使用端到端的框架来利用未标记数据和标记数据同时更新分类器,使得分类器具有很高的效率。

我们提出了一种对抗式知识转移(AKT)框架,用于将知识从未标记数据转移到标记数据,而不需要跨越标记空间的任何对应关系。我们的目标是利用其他对象类的未标记图像来提高目标任务的测试精度,这些图像比目标类的图像更容易获得。我们首先精确地定义了我们要解决的问题,然后给出了我们的知识转移方法,然后给出了优化细节。

在这里插入图片描述
图2:在每次batch发生的各种操作的概述。给定一个小的目标数据集,具有真标签和大量的未标签源数据,(a)我们首先将有标签和未标签样本分别向前传递给分类器M和伪标签生成器G,以提取它们的特征。然后,我们训练一个实例级鉴别器D_I来区分每个实例的目标和源特征,训练一个组级鉴别器D_G来区分一批中的目标和源特征的均值。(b)接下来,我们更新G,利用对抗性损失混乱D_I和D_G。©我们将softmax层的权重从M复制到G,并为未标记的样本生成伪标记。然后,我们使用标记的目标数据和伪标记的源数据更新分类器M,这是我们方法的主要输出。

在这里插入图片描述
标签数据和对应label;
在这里插入图片描述
未标签数据
在这里插入图片描述
伪标签
更具体地说,我们的目标是使用未标记集X_s和X_t来提高分类器的性能,而不是只使用X_t。

Adversarial Knowledge Transfer

x ∈ X_t ∪ X_s;使用神经网络构成伪标签生成器pseudo-label generator G(x); 伪标记生成器的目标是预测未标记源样本的标记,从而使源样本似乎是从标记数据分布中提取出来的。然而,由于未标记源样本不遵循与目标数据相同的标签空间,我们需要跨未标记和标记的特征对齐,这样才能生成更多可靠的伪标签;为了实现这一目标,我们引入了两个鉴别器,即实例级鉴别器和组级鉴别器,它们充当分类器M和伪标签生成器G之间的特征对齐器。实例级鉴别器D_I通过对抗性训练学习检测特征是来自分类器还是伪标签生成器。另一方面,群级鉴别器D_G旨在通过区分均值特征是来自分类器还是伪标签生成器来学习整体统计信息。具体地说,通过这两个鉴别器,我们试图既发现实例级的本地化知识,又发现全局特征分布知识,同时对齐跨源域和目标域的特征。
对于分类器和伪标签生成器,k^th层的特征表示分别定义为M,k(x)和G,k(x)。在我们的实验中,我们从最后一个完全连接层(用L表示)中选择特征,因为它在许多迁移学习任务中被证明是有效的。我们使用对抗性训练学习G,D_I,D_G和M的参数,如算法1所述。最后将学习到的分类器用于对目标任务的评价。而且,我们对两者,分类器和伪标签生成器都采用相同的网络架构,以确保标记样本和未标记样本的特征表示在相同的空间中进行特征对齐。请注意,我们的伪标签生成器模仿了生成对抗网络(GANs)[13]中的生成器,后者从随机向量生成图像。然而,与GANs中的生成器不同的是,我们的生成器的输入是图像而不是潜在的噪声向量,它为给定的输入生成伪标签。

Optimization

为了从无标签数据中传递知识,我们提出了基于鉴别器和伪标签生成器的二人最小最大博弈。为此,我们需要学习生成器G和鉴别器的参数,使G能够生成特征,使得D_I和D_G都不能分别从目标分布或源分布中区分实例级和组级特征。我们将分类器特征视为正特征,伪标签生成器特征视为负特征,然后使用二进制交叉熵损失训练鉴别器。另一方面,训练生成器以产生特征,从而欺骗鉴别器。因此,类似于GAN,伪标签生成器G和鉴别器D_I和D_G玩以下两人最小-最大游戏:

在这里插入图片描述
其中,p M(x_t)和p G(x_s)对应于目标域M和源域G的特征分布。我们在方程中求解优化问题。公式(1)交替使用梯度下降,其中我们一旦固定发生器G的参数,就训练鉴别器D_I和D_G,反之亦然,
如下所述。鉴别器训练。给定两个用于跨分类器M和伪标签生成器G的实例级和组级特征对齐的鉴别器,在训练期间,我们首先更新当M的特征为正,G的特征为负时,判别器D_I和D_G的权重。对于大小为b的批处理,均值特征上的实例级鉴别器损失((L_D_I ))和组级鉴别器损失(L_D_G)定义如下。

在这里插入图片描述

伪标签生成器训练。训练G的目标是欺骗鉴别器,使得鉴别器不能区分特征是来自分类器还是伪标签生成器。训练G的损失函数可以是
写法如下。
在这里插入图片描述

分类器训练。在每次迭代结束时使用标记和未标记数据更新分类器。对于有标记的数据,我们可以很容易地更新M,但是对于未标记的源数据,由于没有标记,我们使用来自生成器的预测作为真标记来计算损失。更新具有批大小b的迭代的分类器的损失函数可以表示为:

在这里插入图片描述
伪代码来了:

在这里插入图片描述

输入:标签数据和未标签数据
输出:分类模型 M
循环迭代:
  样本b个tuple来自于标签数据
  样本b个样本来自于未标签数据
  step a. 最小化L_D使用公式4来更新D_I, D_G
  step b. 最大化L_G使用公式5来更新G
  step c. 最大化L_M使用公式6来更新M
结束

EXPERIMENTS

我们在不同的视觉识别任务上进行了严格的实验,如物体识别(单标签和多标签),字符识别(字体和手写)以及情感识别,以验证我们的方法的有效性。我们的主要目标是将知识从未标记数据转移到分类器网络,使得对目标数据的测试精度比从头开始的训练(即,仅用目标数据进行训练而没有任何知识转移)显著提高,并且接近于使用标记源数据的监督知识转移方法。注意,我们并不要求源域和目标域在我们所有的实验中具有相同的分布或标签空间。
其中之一:
使用 PASCAL-VOC [9](有4982张标签图片)作为标签的目标域, ImageNet [8] (1.1M)作为没有标签的源域.

在这里插入图片描述
效果展示

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值