Description
大于1的正整数 n 都可以分解为 n = x1 * x2 * ... * xm 例如:当n=12时,共有8种不同的分解式: 12 = 12 12 = 6*2 12 = 4*3 12 = 3*4 12 = 3*2*2 12 = 2*6 12 = 2*3*2 12 = 2*2*3 对于给定正整数n,计算n共有多少种不同的分解式。
Input
第一行一个正整数n (1<=n<=1000000)
Output
不同的分解式数目
Sample Input
12
Sample Output
8
此题因子讲顺序的.第一个因子可能是2~n之间的数.
比如对12而言,第一个因子可能是2,3,4,6,12.
将第一个因子为2的分解个数,加上第一个因子为3的分解个数,...,直至加到第一个因子为12的分解个数.
而第一个因子为2的分解个数又是多少呢?是6(因为12/2=6)的分解个数,递归求解!
可用“递归”和“备忘录方法”两种方法分别求解,并测试一下效率。
递归实现整数因子分解的计数。
假设对正整数n的因子分解计数为solve(n)。 1)
当n=1时,计数加1。 2)当n>1时,对每个因子i,计算solve(n/i)。
#include "stdio.h"
int count = 1;
void Account(int num)
{
for (int i = num - 1; i >= 2; i--)
if (num % i == 0)
{
count++;
Account(num / i); //采用递归进行统计
}
}
int main()
{
int num;
scanf("%d", &num);
if (num != 0)
Account(num);
printf("%d\n", count);
return 0;
}