让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:20输出样例:
4
#include <iostream>
#include<stdio.h>
#include <math.h>
using namespace std;
int main()
{
int i, j, N=4;
int num = 0, k = 0;
int a[10000] = { 0 };
scanf("%d",&N);
for (i = 2; i <= N; i++)
{
for (j=2; j <(int)sqrt(i)+1; j++)
{
if (i%j == 0)
break;
}
if (j == (int)sqrt(i) + 1)
{
a[k] = i;
k++;
}
}
for (i = 0; a[i] > 0; i++)
{
if (a[i + 1] - a[i] == 2)
num++;
}
printf("%d\n", num);
return 0;
}