机器学习算法中GBDT和XGBOOST的区别有哪些?
xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法。基学习器除了可以用tree,也可以用线性分类器。而GBDT是特指梯度提升决策树算法。
优势:
1.将树模型的复杂度作为正则项加在优化目标中
2.公式推导中用到了二阶导数信息,普通的GBDT只用到了一阶
3.允许使用列抽样(column sampling)防止过拟合,借鉴了RF的思想
4.实现了一种分裂节点寻找的近似算法,用于加速和减小内存消耗
5.节点分裂算法能够自动利用特征的稀疏性
6.data事先排好序并以block的形式存储,利于并行计算
7.支持分布式计算,可以运行在MPI,YARN上,得益于底层支持容错的分布式通信框架rabit
机器学习算法中GBDT和XGBOOST的区别
最新推荐文章于 2021-12-07 18:02:00 发布