机器学习算法中GBDT和XGBOOST的区别

机器学习算法中GBDT和XGBOOST的区别有哪些?
xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法。基学习器除了可以用tree,也可以用线性分类器。而GBDT是特指梯度提升决策树算法。
优势:
1.将树模型的复杂度作为正则项加在优化目标中
2.公式推导中用到了二阶导数信息,普通的GBDT只用到了一阶
3.允许使用列抽样(column sampling)防止过拟合,借鉴了RF的思想
4.实现了一种分裂节点寻找的近似算法,用于加速和减小内存消耗
5.节点分裂算法能够自动利用特征的稀疏性
6.data事先排好序并以block的形式存储,利于并行计算
7.支持分布式计算,可以运行在MPI,YARN上,得益于底层支持容错的分布式通信框架rabit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zixia0511

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值