/*
描述:
设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括:
(1)删除一个字符;
(2)插入一个字符;
(3)将一个字符改为另一个字符。
将字符串A变换为字符串B所用的最少字符操作数称为字符串A到B的编辑距离,记为d(A,B)。试设计一个有效算法,对任给的2个字符串A和B,计算出它们的编辑距离d(A,B)。
要求:
输入:第1行是字符串A,第2行是字符串B。
输出:字符串A和B的编辑距离d(A,B)
思路:
开一个二维数组d[i][j]来记录a0-ai与b0-bj之间的编辑距离,要递推时,需要考虑对其中一个字符串的删除操作、插入操作和替换操作分别花费的开销,从中找出一个最小的开销即为所求
具体算法:
首先给定第一行和第一列,然后,每个值d[i,j]这样计算:d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+(s1[i]==s2[j]?0:1));
最后一行,最后一列的那个值就是最小编辑距离
*/
#include <iostream>
using namespace std;
char s1[100], s2[100];
int dp[101][101];
int min(int a, int b, int c)
{
int temp=(a<b) ? a : b;
return (temp<c) ? temp : c;
}
void LevenshteinDistance(int len1, int len2)
{
for(int i=0; i<=len1; i++)
dp[i][0]=i;
for(int j=0; j<=len2; j++)
dp[0][j]=j;
for(int i=1; i<=len1; i++)
{
for(int j=1; j<=len2; j++)
{
int cost=(s1[i-1]==s2[j-1]) ? 0 : 1; //注意这里不是s1[i]==s2[j]
int deletion=dp[i-1][j]+1;
int insertion=dp[i][j-1]+1;
int substitution=dp[i-1][j-1]+cost;
dp[i][j]=min(deletion, insertion, substitution);
}
}
cout<<dp[len1][len2]<<endl;
}
void main()
{
cout<<"请输入字符串一:"<<endl;
cin>>s1;
cout<<"请输入字符串二:"<<endl;
cin>>s2;
LevenshteinDistance(strlen(s1), strlen(s2));
}
15 思考题 编辑距离
最新推荐文章于 2024-10-13 18:25:59 发布