15 思考题 编辑距离

 
/*
描述:
设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括:
(1)删除一个字符;
(2)插入一个字符;
(3)将一个字符改为另一个字符。
将字符串A变换为字符串B所用的最少字符操作数称为字符串A到B的编辑距离,记为d(A,B)。试设计一个有效算法,对任给的2个字符串A和B,计算出它们的编辑距离d(A,B)。

要求:
输入:第1行是字符串A,第2行是字符串B。
输出:字符串A和B的编辑距离d(A,B)

思路:
开一个二维数组d[i][j]来记录a0-ai与b0-bj之间的编辑距离,要递推时,需要考虑对其中一个字符串的删除操作、插入操作和替换操作分别花费的开销,从中找出一个最小的开销即为所求
具体算法:
首先给定第一行和第一列,然后,每个值d[i,j]这样计算:d[i][j] = min(d[i-1][j]+1, d[i][j-1]+1, d[i-1][j-1]+(s1[i]==s2[j]?0:1));  
 最后一行,最后一列的那个值就是最小编辑距离 
*/

#include <iostream>
using namespace std;

char s1[100], s2[100];
int dp[101][101];

int min(int a, int b, int c)
{
	int temp=(a<b) ? a : b;
	return (temp<c) ? temp : c;
}

void LevenshteinDistance(int len1, int len2)
{
	for(int i=0; i<=len1; i++)
		dp[i][0]=i;
	for(int j=0; j<=len2; j++)
		dp[0][j]=j;
	for(int i=1; i<=len1; i++)
	{
		for(int j=1; j<=len2; j++)
		{
			int cost=(s1[i-1]==s2[j-1]) ? 0 : 1;			//注意这里不是s1[i]==s2[j]
			int deletion=dp[i-1][j]+1;
			int insertion=dp[i][j-1]+1;
			int substitution=dp[i-1][j-1]+cost;
			dp[i][j]=min(deletion, insertion, substitution);
		}
	}
	cout<<dp[len1][len2]<<endl;
}

void main()
{
	cout<<"请输入字符串一:"<<endl;
	cin>>s1;
	cout<<"请输入字符串二:"<<endl;
	cin>>s2;
	LevenshteinDistance(strlen(s1), strlen(s2));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值