EM算法笔记

0、整体图解

初始化参数θ

  (1)E-Step:根据当前参数θ计算每个样本属于zi的概率,这个概率就是Q(z);

  (2)M-Step:根据当前得到的Q(z),求出含有θ的似然函数的下界(jensen不等式),并最大化,得到新一轮的参数θ;

  重复(1)和(2)直到收敛

1、目标函数

      L(\theta ) =\prod_{i=1}^{n} p(x_{i}|\theta ) = \prod_{i=1}^{n} \sum_{j=1}^{m} p(x_{i};z_{j}|\theta)

      l(\theta ) = log L(\theta)

       l(\theta ) = \sum_{i=1}^{n} log\sum_{j=1}^{m} p(x_{i};z_{j}|\theta) \\= \sum_{i=1}^{n} log\sum_{j=1}^{m}Q(z_j) \frac{p(x_{i};z_{j}|\theta)}{Q(z_j)} \\\geq \sum_{i=1}^{n} \sum_{j=1}^{m}Q(z_j)log \frac{p(x_{i};z_{j}|\theta)}{Q(z_j)} \\\propto \sum_{i=1}^{n} \sum_{j=1}^{m}Q(z_j)log p(x_{i};z_{j}|\theta)

       \theta = arg(max(l(\theta ) ))

2、取等号

        \frac{p(x_{i};z_{j}|\theta)}{Q(z_j)} = C ; \sum_{j=1}^{m}Q(z_j)=1 \\ \Rightarrow p(x_{i};z_{j}|\theta) = C*Q(z_j) \\ \Rightarrow \sum_{j=1}^{m}p(x_{i};z_{j}|\theta) = \sum_{j=1}^{m}(C*Q(z_j))=C

       Q(z_j) = \frac{p(x_{i};z_{j}|\theta)}{\sum_{j=1}^{m}p(x_{i};z_{j}|\theta)} = \frac{p(x_{i};z_{j}|\theta)}{p(x_{i}|\theta)} =p(z_{j}|x_{i},\theta)           

3、迭代

       E-step:Q(z_j) =p(z_{j}|x_{i},\theta)      

       M-step:\theta = arg(max(l(\theta ) ))

4、用途

       模型参数估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值