第一个深度优先搜索的题目。
很显然这个就是分情况讨论,每次选和不选某值,最终将满足结果的序列筛选出来,我自己写的一个dfs遍历,我比较喜欢对每一个元素进行遍历,用循环控制,这样的好处是避免递归层数太多。但是我写完提交测试发现测试点2,5答案错误,想了半天觉得可能是有答案并列时排序出了问题
因为我把排序算法删除,再提交代码仍然是2,5错误。
但是我感觉自己的排序函数并没有出错,就很迷。。
(测试点2,5错误)
#include<iostream>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
bool cmp(vector<int>&A, vector<int>&B) {
sort(A.begin(), A.end());
sort(B.begin(), B.end());
int t = min(A.size(), B.size());
for (int i = 0; i < t; i++) {
if (A[i] == B[i])continue;
if (A[i] > B[i])return true;
else return false;
}
return false;
}
int val[22];
vector<int>ans, tmp;
vector < vector<int>>V;
int N, K, P, flag = 0, tsum = 0, ttsum = 0, vsum = 0;
void dfs(int sum, int index) {
if (sum + val[index] > N||tmp.size()>K)return;
else if (sum + val[index] == N&&tmp.size()==K-1) {
tmp.push_back(index);
ans = tmp;
tsum = vsum;
return;
}
sum += val[index];
vsum += index;
tmp.push_back(index);
for (int j = index; j >= 1; j--) {
dfs(sum, j);
}
tmp.pop_back();
vsum -= index;
}
int main() {
scanf("%d%d%d", &N, &K, &P);
for (int i = 0; i <= sqrt(N); i++) {
val[i] = pow(i, P);
}
for (int j = sqrt(N); j >= 1; j--) {
tmp.clear();
ans.clear();
tsum = 0;
dfs(0, j);
if (ans.size() != 0) {
if (tsum < ttsum)continue;
if (tsum > ttsum) {
V.clear();
ttsum = tsum;
}
V.push_back(ans);
}
}
if (V.size() == 0)printf("Impossible\n");
else {
if (V.size() > 1) {
sort(V.begin(), V.end(), cmp);
reverse(V[0].begin(), V[0].end());
}
printf("%d =", N);
for (int i = 0; i < V[0].size(); i++) {
if (i == 0)printf(" %d^%d", V[0][i], P);
else printf(" + %d^%d", V[0][i], P);
}
}
return 0;
}
反思了一下,发现自己的dfs函数存在本质上的错误,漏掉了很对情况,我的代码并不会充分考虑每个条件,不会考虑一个结点是选和不选情况,而是选择一切能选的加到底,不满足题设就返回。
学习了大神的 代码,有一些收获:
一:递归及时剪枝,不要进入多余的层数。
二:需要计算的参数尽量少使用全局变量,而是加到函数参数里面,这样可以层层保存。
三:对全局变量vector的使用,一个每次选完要记得pop掉,这样在进入下一层就相当于不选。
附修改后的代码:
#include<iostream>
#include<math.h>
#include<vector>
using namespace std;
int val[21];
int N, K, P, maxK = 0;
vector<int>tmp, ans;
void DFS(int index, int sum, int numK, int facsum) {
if (sum == N && numK == K) {
if (facsum > maxK) {
maxK = facsum;
ans = tmp;
return;
}
}
if (numK >= K || sum >= N)return;
if (index < 1)return;
if (sum + val[index] <= N) {
tmp.push_back(index);
DFS(index, sum + val[index], numK + 1, facsum + index);
tmp.pop_back();
}
DFS(index - 1, sum, numK, facsum);
}
int main() {
scanf("%d%d%d", &N, &K, &P);
for (int i = 0; i <= pow(N, (double)1 / P); i++) {
val[i] = pow(i, P);
}
DFS(pow(N, (double)1 / P), 0, 0, 0);
if (ans.size() == 0)printf("Impossible\n");
else {
printf("%d =",N);
for (int i = 0; i < ans.size(); i++) {
if (i == 0)printf(" %d^%d", ans[i], P);
else printf(" + %d^%d", ans[i], P);
}
}
return 0;
}