Elasticsearch 学习

一、概念

一个采用RESTFUL API标准,分布式,高扩展性高可用性实时数据分析全文搜索工具

高扩展性:添加节点非常简单,新的节点无需做复杂的配置,接入elasticsearch的集群,自动被发现。

高可用性:elasticsearch是分布式的,每个分片都有备份,所有down一两个节点是不会出现任何问题

实时搜索:索引一个文档到这个文档被搜索到,只有一个轻微的延迟(通常是1s)

集群(cluster)

一个集群就是由一个或多个节点组织在一起,它们共同持有你整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群。
节点(node)

一个节点是你集群中的一个服务器,作为集群的一部分,它存储你的数据,参与集群的索引和搜索功能。和集群类似,一个节点也是由一个名字来标识的,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

1. 客户端节点

当主节点和数据节点配置都设置为false的时候,该节点只能处理路由请求,处理搜索,分发索引操作等,从本质上来说该客户节点表现为智能负载平衡器。独立的客户端节点在一个比较大的集群中是非常有用的,他协调主节点和数据节点,客户端节点加入集群可以得到集群的状态,根据集群的状态可以直接路由请求。

2. 数据节点

数据节点主要是存储索引数据的节点,主要对文档进行增删改查操作,聚合操作等。数据节点对cpu,内存,io要求较高, 在优化的时候需要监控数据节点的状态,当资源不够的时候,需要在集群中添加新的节点。

3. 主节点

主资格节点的主要职责是和集群操作相关的内容,如创建或删除索引,跟踪哪些节点是群集的一部分,并决定哪些分片分配给相关的节点。稳定的主节点对集群的健康是非常重要的,默认情况下任何一个集群中的节点都有可能被选为主节点,索引数据和搜索查询等操作会占用大量的cpu,内存,io资源,为了确保一个集群的稳定,分离主节点和数据节点是一个比较好的选择

4. 建议

在一个生产集群中我们可以对这些节点的职责进行划分,建议集群中设置3台以上的节点作为master节点,这些节点只负责成为主节点,维护整个集群的状态。再根据数据量设置一批data节点,这些节点只负责存储数据,后期提供建立索引和查询索引的服务,这样的话如果用户请求比较频繁,这些节点的压力也会比较大,所以在集群中建议再设置一批client节点(node.master: false node.data: false),这些节点只负责处理用户请求,实现请求转发,负载均衡等功能

节点对等:

分片和复制(shards & replicas)

一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。

为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。


分片之所以重要,主要有两方面的原因:

允许你水平分割/扩展你的内容容量

允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量

至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制

复制之所以重要,有两个主要原因:

在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。

扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。
默认情况下,Elasticsearch中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。

Elasticsearch架构

第一层 —— Gateway:即Elasticsearch支持的索引数据的存储格式,当Elasticsearch关闭再启动的时候,它就会从这个gateway里面读取索引数据;支持的格式有:本地的Local FileSystem、分布式的Shared FileSystem、Hadoop的文件系统HDFS、Amazon(亚马逊)的S3。

第二层 —— Lucene框架:Elasticsearch基于Lucene(基于Java开发)框架。

第三层 —— Elasticsearch数据的加工处理方式:Index Module(创建Index模块)、Search Module(搜索模块)、Mapping(映射)、River(运行在Elasticsearch集群内部的一个插件,主要用来从外部获取获取异构数据,然后在Elasticsearch里创建索引;常见的插件有RabbitMQ River、Twitter River)。

第四层 —— Elasticsearch发现机制、脚本:Discovery 是Elasticsearch自动发现节点的机制;Zen是用来实现节点自动发现、Master节点选举用;(Elasticsearch是基于P2P的系统,它首先通过广播的机制寻找存在的节点,然后再通过多播协议来进行节点间的通信,同时也支持点对点的交互)。Scripting 是脚本执行功能,有这个功能能很方便对查询出来的数据进行加工处理。3rd Plugins 表示Elasticsearch支持安装很多第三方的插件,例如elasticsearch-ik分词插件、elasticsearch-sql sql插件。

第五层 —— Elasticsearch和客户端的交互方式:有Thrift、Memcached、Http三种协议,默认的是用Http协议传输,jmx是监控实现

第六层 —— Elasticsearch的API支持模式:RESTFul Style API风格的API接口标准是当下十分流行的。ElasticSearch由Transport负责通信,基于TCP通信采用Netty实现

rest接口(get、post、put、delete)

Elasticsearch提供了非常全面和强大的REST API,利用这个REST API你可以同你的集群交互。利用这个API,可以做的几件事情:

检查你的集群、节点和索引的健康状态、和各种统计信息

管理你的集群、节点、索引数据和元数据

对你的索引进行CRUD(创建、读取、更新和删除)操作

执行高级的查询操作,像是分页、排序、过滤、聚合(aggregations)和许多其它操作

二、elasticsearch linux安装

1、jdk版本,至少1.8,推荐:1.8.0_131

2、使用tar方式安装

3、下载Elasticsearch 6.2.4 tar

curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.4.tar.gz

4、解压缩文件

tar -xvf elasticsearch-6.2.4.tar.gz

5、进入bin目录

cd elasticsearch-6.2.4/bin

6、启动一个单一节点的集群

./elasticsearch

7. 查看是否启动成功

curl 127.0.0.1:9200

https://jingyan.baidu.com/article/8cdccae93879e9315413cd84.html

三、elasticsearch常用工具

1. Head插件

2、Kibana工具

除了支持各种数据的可视化之外,最重要的是:支持Dev Tool进行RESTFUL API增删改查操作。 
——比Postman工具和curl都方便很多。

使用kibana操作es语句:

########针对索引的操作

# 查询所有索引
GET /_cat/indices?v

# 创建名为customer的索引
PUT /customer?pretty

# 删除名为customer的索引
DELETE /customer?pretty

# 查看索引信息
GET /customer

# 查看索引配置
GET /customer/_settings
########针对文档的操作

# 查询script_execution_statistic
GET /script_execution_statistic/_search
{
  "query":{
   "match_all": {
   
   }
  },
  "sort": {
    "execution_time":"desc"
  },
  "size": 28
}
 
# 根据id查询script_execution_statistic
GET /script_execution_statistic/_doc/28d7c0a3c2ec4aa6a42e5f378a081111?pretty

# 根据id删除script_execution_statistic
DELETE /script_execution_statistic/_doc/28d7c0a3c2ec4aa6a42e5f378a081111?pretty

# 根据id修改script_execution_statistic
POST /script_execution_statistic/_doc/28d7c0a3c2ec4aa6a42e5f378a08131a/_update
{
  "doc":{
    "is_success": "1"
  }
}

# 根据id新增script_execution_statistic
PUT /script_execution_statistic/_doc/28d7c0a3c2ec4aa6a42e5f378a081111
{
          "host_ip" : "192.168.17.31",
          "script_name" : "kafkaMonitor.sh",
          "is_success" : "0",
          "exception_message" : "error",
          "execution_time" : 1558325180365
}

注意:

四、elasticsearch配置文件

elasticsearch的config文件夹里面有两个配置文 件:elasticsearch.yml和logging.yml,第一个是es的基本配置文件,第二个是日志配置文件,es也是使用log4j来记录日 志的,所以logging.yml里的设置按普通log4j配置文件来设置就行了。下面主要讲解下elasticsearch.yml这个文件中可配置的 东西。

cluster.name: elasticsearch
配置es的集群名称,默认是elasticsearch,es会自动发现在同一网段下的es,如果在同一网段下有多个集群,就可以用这个属性来区分不同的集群。

node.name: "Franz Kafka"
节点名,默认随机指定一个name列表中名字,该列表在es的jar包中config文件夹里name.txt文件中,其中有很多作者添加的有趣名字。

node.master: true
指定该节点是否有资格被选举成为node,默认是true,es是默认集群中的第一台机器为master,如果这台机挂了就会重新选举master。

node.data: true
指定该节点是否存储索引数据,默认为true。

index.number_of_shards: 5
设置默认索引分片个数,默认为5片。

index.number_of_replicas: 1
设置默认索引副本个数,默认为1个副本。

path.conf: /path/to/conf
设置配置文件的存储路径,默认是es根目录下的config文件夹。

path.data: /path/to/data
设置索引数据的存储路径,默认是es根目录下的data文件夹,可以设置多个存储路径,用逗号隔开,例:
path.data: /path/to/data1,/path/to/data2

path.work: /path/to/work
设置临时文件的存储路径,默认是es根目录下的work文件夹。

path.logs: /path/to/logs
设置日志文件的存储路径,默认是es根目录下的logs文件夹

path.plugins: /path/to/plugins
设置插件的存放路径,默认是es根目录下的plugins文件夹

bootstrap.mlockall: true
设置为true来锁住内存。因为当jvm开始swapping时es的效率 会降低,所以要保证它不swap,可以把ES_MIN_MEM和ES_MAX_MEM两个环境变量设置成同一个值,并且保证机器有足够的内存分配给es。 同时也要允许elasticsearch的进程可以锁住内存,linux下可以通过`ulimit -l unlimited`命令。

network.bind_host: 192.168.0.1
设置绑定的ip地址,可以是ipv4或ipv6的,默认为0.0.0.0。


network.publish_host: 192.168.0.1
设置其它节点和该节点交互的ip地址,如果不设置它会自动判断,值必须是个真实的ip地址。

network.host: 192.168.0.1
这个参数是用来同时设置bind_host和publish_host上面两个参数。

transport.tcp.port: 9300
设置节点间交互的tcp端口,默认是9300。

transport.tcp.compress: true
设置是否压缩tcp传输时的数据,默认为false,不压缩。

http.port: 9200
设置对外服务的http端口,默认为9200。

http.max_content_length: 100mb
设置内容的最大容量,默认100mb

http.enabled: false
是否使用http协议对外提供服务,默认为true,开启。

gateway.type: local
gateway的类型,默认为local即为本地文件系统,可以设置为本地文件系统,分布式文件系统,hadoop的HDFS,和amazon的s3服务器,其它文件系统的设置方法下次再详细说。

gateway.recover_after_nodes: 1
设置集群中N个节点启动时进行数据恢复,默认为1。

gateway.recover_after_time: 5m
设置初始化数据恢复进程的超时时间,默认是5分钟。

gateway.expected_nodes: 2
设置这个集群中节点的数量,默认为2,一旦这N个节点启动,就会立即进行数据恢复。

cluster.routing.allocation.node_initial_primaries_recoveries: 4
初始化数据恢复时,并发恢复线程的个数,默认为4。

cluster.routing.allocation.node_concurrent_recoveries: 2
添加删除节点或负载均衡时并发恢复线程的个数,默认为4。

indices.recovery.max_size_per_sec: 0
设置数据恢复时限制的带宽,如入100mb,默认为0,即无限制。

indices.recovery.concurrent_streams: 5
设置这个参数来限制从其它分片恢复数据时最大同时打开并发流的个数,默认为5。

discovery.zen.minimum_master_nodes: 1
设置这个参数来保证集群中的节点可以知道其它N个有master资格的节点。默认为1,对于大的集群来说,可以设置大一点的值(2-4)

discovery.zen.ping.timeout: 3s
设置集群中自动发现其它节点时ping连接超时时间,默认为3秒,对于比较差的网络环境可以高点的值来防止自动发现时出错。

discovery.zen.ping.multicast.enabled: false
设置是否打开多播发现节点,默认是true。

discovery.zen.ping.unicast.hosts: ["host1", "host2:port", "host3[portX-portY]"]
设置集群中master节点的初始列表,可以通过这些节点来自动发现新加入集群的节点。

下面是一些查询时的慢日志参数设置
index.search.slowlog.level: TRACE
index.search.slowlog.threshold.query.warn: 10s
index.search.slowlog.threshold.query.info: 5s
index.search.slowlog.threshold.query.debug: 2s
index.search.slowlog.threshold.query.trace: 500ms

index.search.slowlog.threshold.fetch.warn: 1s
index.search.slowlog.threshold.fetch.info: 800ms
index.search.slowlog.threshold.fetch.debug:500ms
index.search.slowlog.threshold.fetch.trace: 200ms

来自:https://www.cnblogs.com/sunxucool/p/3799190.html

五、elasticsearch与java交互

 

你好!关于学习Elasticsearch,我可以给你一些指导。Elasticsearch是一个开源的分布式搜索和分析引擎,主要用于快速、实时地存储、搜索和分析大量数据。下面是一些学习Elasticsearch的步骤: 1. 了解基本概念:开始学习Elasticsearch之前,你需要了解一些基本的概念,比如索引(index)、类型(type)、文档(document)、字段(field)等。这将帮助你更好地理解Elasticsearch的工作原理。 2. 安装和配置:根据你的操作系统,你可以从Elasticsearch官方网站下载并安装合适的版本。安装完成后,你需要进行适当的配置,如设置集群名称、分配内存等。 3. 学习REST API:Elasticsearch提供了丰富的REST API,用于与其进行交互。了解如何使用这些API来索引、搜索和删除数据是学习Elasticsearch的重要一步。 4. 索引和搜索数据:学习如何创建索引、添加文档以及执行搜索操作是使用Elasticsearch的关键。掌握查询语法、过滤器、聚合操作等功能可以帮助你更有效地使用Elasticsearch。 5. 数据建模和分析:学习如何设计合适的数据模型和映射,以及如何使用Elasticsearch进行数据分析和可视化是提高你的技能的重要一步。 6. 扩展和优化:学习如何在生产环境中扩展和优化Elasticsearch集群是非常重要的。了解如何分片、复制、调优性能等将帮助你更好地管理和维护你的数据。 7. 学习资源:除了官方文档,还有很多优秀的学习资源可供参考,如书籍、教程和在线课程等。利用这些资源可以更系统地学习和掌握Elasticsearch。 希望这些步骤能对你学习Elasticsearch有所帮助!如果有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值