基于KNN的手写数字识别

代码如下:

#coding=utf-8
from numpy import *
import operator
import os
import time
def createDataSet():
    group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
    labels = ['A','A','B','B']
    return group,labels
#inputX表示输入向量(也就是我们要判断它属于哪一类的)
#dataSet表示训练样本
#label表示训练样本的标签
#k是最近邻的参数,选最近k个
def kNNclassify(inputX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]#计算有几个训练数据
    #开始计算欧几里得距离
    diffMat = tile(inputX, (dataSetSize,1)) - dataSet
    #diffMat = inputX.repeat(dataSetSize, aixs=1) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis=1)#矩阵每一行向量相加
    distances = sqDistances ** 0.5
    #欧几里得距离计算完毕
    sortedDistance = distances.argsort()
    classCount = {}
    for i in xrange(k):
        voteLabel = labels[sortedDistance[i]]
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    res = max(classCount)
    return res
def img2vec(filename):
    returnVec = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVec[0,32*i+j] = int(lineStr[j])
    return returnVec

def handwritingClassTest(trainingFloder,testFloder,K):
    hwLabels = []
    trainingFileList = os.listdir(trainingFloder)
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileName = trainingFileList[i]
        fileStr = fileName.split('.')[0]
        #获取真实的值
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vec(trainingFloder+'/'+fileName)
    testFileList = os.listdir(testFloder)
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileName = testFileList[i]
        fileStr = fileName.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vec(testFloder+'/'+fileName)
        classifierResult = kNNclassify(vectorUnderTest, trainingMat, hwLabels, K)
        #输出测试结果
        #print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if classifierResult != classNumStr:
            errorCount +=1

    print "\nthe total number of tests is: %d" % mTest  # 输出测试总样本数
    print "the total number of errors is: %d" % errorCount  # 输出测试错误样本数
    print 'the correct rate is; ',1-errorCount/mTest
    print 'the error rate is; ',errorCount/mTest

def main():
    t1 = time.clock()
    handwritingClassTest('trainingDigits','testDigits',3)
    t2 = time.clock()
    print 'execute time:%ds' %(t2-t1)
if __name__=='__main__':
    main()
#k=1 98.62%

#k=2 98.52%

#k=3 97.56%

#k=4 96.30%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值