在大型空间数据库中,数据摘要被广泛应用于提高查询处理速度。多维直方图作为最流行的空间数据概要之一,已经被现代数据库管理系统和分析系统研究和采用几十年了。然而,现有的MH构建技术高度依赖于专家知识和统计假设,使得它们很难在不同的数据集上取得一致令人满意的性能。受新兴的学习索引技术的启发,本文提出了一种学习数据摘要技术——学习多维直方图(learned多维直方图),该技术广泛使用的索引结构如b树,可以通过集成简单的机器学习模型来进一步改进。与传统的数据概要技术相比,LHist是完全数据驱动的,易于实现,并有可能实现更好的存储精度权衡。以范围COUNT查询估计为典型任务,在大型真实数据集和综合基准上的大量实验研究表明,LHist在存储成本、查询处理效率和估计精度方面优于现有的概要结构。