Ada-GNN: Adapting to Local Patterns for Improving Graph Neural Networks

这篇论文介绍了一种名为Ada-GNN的模型,针对大规模图中节点的多样性,通过子组级别的个性化GNN模型提升表达能力和公平性。Ada-GNN利用图划分、元适配器和特征增强模块,实现了从全局到局部的知识自适应,适用于多种扩展GNN方法。实验证明其在大规模数据集上的优越性及通用性。
摘要由CSDN通过智能技术生成

图神经网络(GNNs)在挖掘各种图结构数据方面表现出了强大的能力。由于真实世界的图通常具有较大的规模,训练可扩展的gnn成为近年来的研究趋势之一。现有方法只产生一个模型来服务于所有节点。然而,不同的节点可能表现出不同的属性,因此需要不同的模型,特别是当图较大时。强制所有节点共享一个统一的模型会降低模型的表达能力。更糟糕的是,一些小群体的模式由于他们的小众性而容易被模型忽略,使得这些节点不可预测,甚至其中一些提出了潜在的不公平问题

提出了一种模型无关框架Ada-GNN,为特定的节点集提供个性化的GNN模型。直观地说,每个节点有自己的模型是可取的。但考虑到框架的效率和可扩展性,我们在子组级而不是单个节点级生成具体的GNN模型。Ada-GNN首先将原始图划分为若干不重叠的子组,并为每个节点指定子组标签。在此基础上,提出了一个元适配器,使基本GNN模型快速地适应于每个子组。为了更好地实现全局到局部知识的自适应,设计了一个特征增强模块来捕捉不同子组之间的差异,以提高Ada-GNN的性能。Ada-GNN是模型无关的,适用于几乎所有现有的基于可扩展GNN的方法,如GraphSAGE、ClusterGCN、SIGN和SAGN。在2个大规模数据集上对6种常用的可扩展GNN方法进行了实验,实验结果一致验证了ada -GNN的通用性和优越性 

阅读读者总结:这篇GNN的论文,主要解决了图中节点分类问题,是一篇有趣的论文。部分内容暂时还没有理解,后续还需要补充一些图卷积的知识再读。

问题:1)虽然上述方法在大规模图上取得了良好的性能,但它们只注重使用统一的模型来表示图中的所有节点,而忽略了节点之间的多样性。

2)对于大规模图,节点很自然地形成局部社区作为子图,表示一些常见的局部模式或共享一些语义。

方法:

Ada-GNN受模型无关元学习(model - agnostic metadata learning, MAML)[3][12]框架的启发,其目标是从多种任务中训练出一个基本模型,该框架能够快速适应新任务,只需少量特定于任务的训练实例。具体而言,首先使用METIS等图划分算法将整个图划分为多个互不重叠的子图,并将每个节点对应的子图ID标记为群智标签;每个子图可以看成是一个任务,因为它包含了一组作为实例的节点。然后,设计一个元适配器模块,从所有子组中学习良好的全局模型,并适应子图中仅有少量实例的局部模型。global-to-local模式可以帮助Ada-GNN在保持全局一致性的同时学习局部差异。最后,在常规的类mml框架中,针对少数支持实例不能有效反映局部模式的情况,提出了一个特征增强模块,利用群智慧信号对原始特征进行增强,使Ada-GNN能够更容易地学习子群之间的差异。

Framework Overview

传统的GNN模型,如SGC、ClusterGCN和SIGN,在训练后生成单个模型𝑓𝜃,然后使用它对所有节点进行预测。当图规模较大时,位于图上不同区域的子图可能有自己特殊的模式,这是很直观的。例如,北京的交通地图和上海的交通地图有很大的不同,尽管它们都是中国交通地图的一部分。因此,如果我们强制大图中的所有节点共享一个统一的模型,最终模型的表达能力将受到影响。 

为了解决这一问题,提出了模型无关框架Ada-GNN,赋予GNN模型局部模式适应能力。Ada-GNN总体示意图如图2所示。Ada-GNN由节点标记、元适配器和特征增强模块3个主要组件组成。给定原始图G,首先应用图划分方法生成𝑀非重叠子群{V1,V2,…,V𝑀},则每个节点将被标记为其所属子组的ID。这一步称为节点标记。然后,为了便于捕获子组级模式,提出了一个特征增强模块来生成额外的子组特征,这些特征记录子组之间的差异。最后,受模型无关的元学习(model - agnostic meta learning, MAML)[3][12]框架的启发,提出了一种自适应学习器meta adapter,以确保全局GNN模型能够快速适应各个子组中的局部模式,完成模型从粗到细的转换。此外,针对Ada-GNN中的子组不公平问题,设计了公平性控制器。在下面的部分中,我们将详细介绍ofAda-GNN的这些组件

 3.3 Node Tagging & Base GNN Model

首先,采用图划分算法将原始图划分为多个互不相交的子图;如何对图进行划分并不是本文的研究重点,考虑到METIS[8]在划分图时的高效性和有效性,本文选择了它。在此之后,我们不再将每个子图作为一个独立的独立的图,而是只标记每个节点对应的子组ID,而不改变原始的图结构,这与ClusterGCN[2]中的操作是不同的。其能够兼其优点是:1)该框架保留了原有的图结构,使容各种基本的GNN模型,仍然适用于图划分[2]、[26]、类初始化[15]传播等图操作;2)节点标注不会因跨子图的边未被删除而造成信息损失。

为了完整地表示一个节点的信息𝑣𝑖,GNN模型从它的邻居节点中聚合和融合特征信息,这种聚合可以重复多次,以便获取高阶邻域信息。Ada-GNN是模型不可知的,但为了更好地说明,我们以SAGN[17]为例。SAGN聚合邻居消息,不需要特征变换和非线性激活:

 为了满足不同子组的个性化需求,可能的解决方案包括:(1)为每个子组找到一个最合适的基GNN模型,例如:GraphSAGE用于子组1,SAGN用于子组2;(2)使用一个基模型,但为每个子群搜索一组最适合的超参数,如为不同的子群搜索不同的跳深𝑘;(3)采用一种基模型和一组超参数,但对每个子群采用不同的参数。参数W𝑎和最终的合并参数W𝑟

在个性化GNN模型研究中,我们认为方法(3)是最佳选择,其原因有3个方面。首先,通过在子群之间共享模型主干和超参数,使得GNN模型具有通用性,便于子群之间共享公共知识;其次,为了灵活地改变模型结构,需要使用AutoML等复杂技术,这将增加框架的计算开销。3)从理论上讲,通过适应不同模型参数实现子群体个性化;例如,如果子群#1在邻居消息有噪声时主要依赖自信息,则最终的局部模型将调整Eq.(5)中的参数W𝑟,以强调ofX对子群#1的影响。 

Meta Adapter

受MAML[3][12]中全局到局部学习框架(global-to-local learning framework,旨在训练良好的全局初始化𝜃,帮助局部模型快速适应新任务)的启发,设计了一个元适配器,为不同的子组生成个性化的模型,同时从原始图中共享公共的全局知识。图2中的Meta Adapter模块说明了整个过程。Meta adapter首先用随机参数初始化全局模型𝜃。元适配器的参数更新有两种类型,即局部自适应和全局优化。将每个子组视为一个任务,将训练实例划分为支持集和查询集。采用支持集进行局部自适应。换句话说,复制𝜃作为本地模型的初始化𝜃' 𝑖,元适配器在支持集上训练本地模型,以匹配𝑖𝑡ℎ子组的模式。局部更新后,在局部查询集上评估局部模型的质量,由查询集产生的梯度指导全局模型的更新方向,称为全局优化。更具体地说,meta adapter有以下两个过程:

Train过程。附录算法1给出了ofAda-GNN的详细训练过程。首先,将全局模型(第1行)的参数随机初始化为𝜃。然后,基于划分算法生成𝑀子组用于节点标注(第2行),表示为{V1,V2,···,V𝑀}。之后,元适配器进入子组感知模型训练阶段(第4-11行)。在每个子组V𝑖中,训练实例(即训练集中有标记的节点)构成支持集V𝑖、𝑆和查询集V𝑖、𝑄。在支持集上,通过最小化以下损失函数

 

其中V𝑖,𝑄表示子组V𝑖中的查询集,𝑀表示子组编号,Lˆ𝑖表示子群V的评价损失𝑖,𝛾2为全局学习率。通过积累多个子组的评价损失,并将其应用于全局参数一次(第11行和第13行),𝜃将被迫学习所有子组之间的全局一致性。通常,每个子组中的训练节点和验证节点分别表示支持集和查询集。但是,由于我们不希望在训练过程中使用验证集,这可能会造成与其他可扩展gnn的不公平比较,所以我们也重用每个子组中的训练节点作为查询集。通过全局到局部模式,meta adapter可以成功地找到所需的参数𝜃,该参数对所有子组只需𝐾步就能适应最优空间。该算法将重复上述过程,直到𝜃稳定。

测试过程。Ada-GNN的试验过程与列车的试验过程非常相似。唯一的区别是,对于全局模型𝜃不再有全局优化。局部适应后,每个局部模型将通过对应子组中的测试节点直接进行评估。注意,在训练后,不需要元适配器存储所有本地模型的参数。经过训练的全局初始化后,全局模型𝜃可以通过相应的支持集V𝑖,𝑆快速适应子组𝑖的𝜃𝑖。也就是说,给定训练好的全局参数𝜃,Ada-GNN可以快速生成所有局部模型(第3-6行),并对每个子组进行评估(第8行)

Feature Enhancement Module

从本质上讲,经典的MAMLframework依赖于特征、标签的分布。映射,以隐式方式捕获本地任务中的特殊模式。然而,当支持集较小时(这是MAML设置的常见情况),局部模式不能有效地反映。为了方便局部模型的自适应过程,提出了一种基于组级信息的显式局部模式描述方法。这些信号应易于获得,便于区分亚组,并能直接影响模型预测[16]。

为此,提出一种特征增强模块,提取并附加组级特征到节点属性中,以更好地区分子组。组级特征包括:1)归一化标签分布;2)一热编码子群ID。这两个辅助信息将被附加到原始节点特征中。由于类和子组的数量有限,特征增强模块只增加了很少的计算和内存开销,但却获得了更好的性能。因此,推导出子群V𝑖中节点𝑢的新特征向量为 

实验部分...............................

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值