ByteGNN: Efficient Graph Neural Network Training at Large Scale

ByteGNN通过小批量图采样和两级调度策略优化分布式GNN系统,显著提升训练速度(23.8倍),CPU利用率(6倍),并降低网络通信成本,是处理大规模图数据的高效工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ByteGNN: Efficient Graph Neural Network Training at Large Scale

图神经网络(gnn)在推荐、风险控制和药物发现等广泛的应用中表现出优异的性能。随着图数据量的增加,分布式GNN系统对于支持高效的GNN训练变得至关重要。然而,现有的分布式GNN训练系统存在网络通信成本高、CPU利用率低、端到端性能差等问题。本文提出了ByteGNN,通过3个关键设计来解决现有分布式GNN系统中的局限性:(1)抽象的小批量图采样以支持高并行性;(2)两级调度策略以提高资源利用率并减少端到端GNN训练时间;实验表明,与目前最先进的分布式GNN系统相比,ByteGNN的端到端执行速度提高了3.5 ~ 23.8倍,CPU利用率提高了2 ~ 6倍,网络通信成本降低了约一半。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值