Uncertainty Quantification for Traffic Forecasting: A Unified Approach (ICDE2023)
不确定性是时间序列预测任务的基本考虑因素。在这项工作中,我们特别关注量化交通预测的不确定性。为了实现这一目标,我们开发了深度时空不确定性量化(DeepSTUQ),它可以估计任意不确定性和认知不确定性。我们首先利用一个时空模型来模拟交通数据的复杂时空相关性。随后,建立了两个独立的最大化异构对数似然的子神经网络来估计任意不确定性。对于认知不确定性的估计,我们分别通过集成蒙特卡罗dropout和自适应加权平均再训练方法,将变分推理和深度集成的优点结合起来。最后,提出了一种基于温度标度的后处理校准方法,提高了模型估计不确定性的泛化能力。在四个公共数据集上进行了大量的实验,实证结果表明,所提出的方法在点预测和不确定性量化方面都优于现有的方法