参考:
Pytorch中contiguous()函数理解-CSDN博客
这个博客里讲的很好:
如果想要断开这两个变量之间的依赖(x本身是contiguous的),就要使用contiguous()针对x进行变化,感觉上就是我们认为的深拷贝。
当调用contiguous()时,会强制拷贝一份tensor,让它的布局和从头创建的一模一样,但是两个tensor完全没有联系
所以我在这个变量后面加上了.contiguous()
参考:
Pytorch中contiguous()函数理解-CSDN博客
这个博客里讲的很好:
如果想要断开这两个变量之间的依赖(x本身是contiguous的),就要使用contiguous()针对x进行变化,感觉上就是我们认为的深拷贝。
当调用contiguous()时,会强制拷贝一份tensor,让它的布局和从头创建的一模一样,但是两个tensor完全没有联系
所以我在这个变量后面加上了.contiguous()