【模板】Dijkstra+前向星+堆优化 (模板题:洛谷P3371)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zj_yuneng/article/details/72770850

题目描述

如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入输出格式

输入格式:

第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。

接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。

输出格式:

一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)

输入输出样例

输入样例#1:
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出样例#1:
0 2 4 3








说明

时空限制:1000ms,128M

数据规模:对于100%的数据:N<=10000,M<=500000

样例说明:




#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXN=10010,MAXM=500010;

struct XY{
	int w,to,pre;
}e[MAXM];

struct XX{
	int dis,num;
}d[MAXN],tmp;

struct cmp1{
	bool operator ()(XX &a,XX &b){
		return a.dis>b.dis;
	}
};

int n,m,s,sz=0;
int las[100010];
bool flag[MAXN];
priority_queue<XX,vector<XX>,cmp1> q;


void add(int x,int y,int w){
	++sz;e[sz].to=y;e[sz].w=w;e[sz].pre=las[x];las[x]=sz;
}


void Dijkstra(){
	int min,u=0;
	d[s].dis=0;q.push(d[s]);
	
	while (!q.empty()){
		u=q.top().num;q.pop();
		if (flag[u]) continue;
		flag[u]=true;
		
		for (int j=las[u];j;j=e[j].pre){
			int mu=e[j].to;
			if (d[mu].dis>d[u].dis+e[j].w){
				d[mu].dis=d[u].dis+e[j].w;
				q.push(d[mu]);
			}
		}
	}
}


int main(){
	int xx,yy,zz;
	cin >>n>>m>>s;
	for (int i=1;i<=n;++i){
		d[i].num=i;d[i].dis=2147483647;
	}
	for (int i=1;i<=m;++i){
		scanf("%d%d%d",&xx,&yy,&zz);
		add(xx,yy,zz);
	}
	
	Dijkstra();
	
	for (int i=1;i<=n;++i)
		printf("%d ",d[i].dis);
	cout <<endl;
	return 0;
}


没有更多推荐了,返回首页