Day20:算法篇之贪心算法

一、算法思想基础

1.五大算法思想:

①分治思想
        快排、分组排序、归并排序、二分查找
②贪心算法/贪婪算法
        大的问题 归纳成小问题 然后迭代
        1)A星寻路算法
        能且只能做当前看来最优的选择 如此反复 试图得到最终最优解
        缺陷:
            1. 并非一定能得到整体最优解
            2. 每一步都是局部最优

       2)最值思想:
       3)背包问题:
            有一个体积为V的背包 
            有N种物品  体积和价值各不相同
            求价值最高的组合方式

        4)迪杰斯卡拉:求最短路径
            

③ 动态规划
④ 动态回溯--->递归  n皇后问题
⑤ 分支定界

2.贪心算法的基本思想

 3.贪心算法的常见应用:

        ①背包问题(货物装载问题)

        ②最短路径问题--->dijkstra算法

        ③哈夫曼编码

        ④短作业调度问题

二、具体问题分析与代码实现:

        1.最值问题最短路径问题--->dijkstra算法

整个算法的流程的关键--->两个内部的循环

        ①第一个for:访问集合内的点都被标记为了flag=1,

                所以我们需要在剩下的点中找到起点到当前点距离最短的(贪心),

                        并记录min=dist[j],将这个点标记,k表示获取到的其下标

        ②第二个for:在上一个for完成扩充点的基础上

        (扩充完点之后,最新扩充的这个点的dist from 起点 to 新点 就不会再改变了!!!)

        就要开始遍历剩下的点,寻找是否有更优的路径。

                关键比较对象:min+map.matrix[k][j]与dist[j]

                        其中min就是dist[k]=起点到k点最短的距离,加上matrix[k][j](即k到j的距离)                                         就是表示起点到j这个点的距离。

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#define NO 0xFFFFFF	//不连通
#define MAX 10		//不能直接定义太大数组
//简单描述一下图
typedef struct graph 
{
	char vexs[MAX];			//顶点数组
	int vexnum;				//顶点数
	int arcnum;				//边数
	int matrix[MAX][MAX];	//权值数组
}GRAPH,*LPGRAPH;
void DijKstra(GRAPH map, int in, int dist[]) 
{
	int i = 0;
	int flag[MAX];		//成功获取路径(进入了扩充的顶点范围内)的标记
	//求出当前节点到其他节点距离
	for (int i = 0; i < map.vexnum; i++) 
	{
		flag[i] = 0;
		dist[i] = map.matrix[in][i]; //当前节点到其他节点距离遍历第一行权值数组
	}
	flag[in] = 1;
	dist[in] = 0;		
	int min;
	int k=0;
	int j;
	//2.扩充顶点
	//数组存储顶点从下标0存储
	for (i = 1; i < map.vexnum; i++)   //i=1本质是扩充第二个顶点
	{
		min = NO;						//不连通的值
		/*第一个循环:是用来找到目前未扩充的且入口到其点距离最小的那个点*/
		for (j = 1; j < map.vexnum; j++) 
		{
			if (flag[j] == 0 && dist[j] < min) 
			{
				min = dist[j];
				k = j;					//连通的状态
			}
		}
		flag[k] = 1;//找到后,将其标记为1--->代表已经进入扩充的名单内了。
		/*第二个循环:判断剩下没进入+有更加适合的路径的点,更新dist距离数组*/
		for (j = 1; j < map.vexnum; j++) 
		{
			if (flag[j] == 0 && (min + map.matrix[k][j]) < dist[j]) 
			{
				dist[j] = min + map.matrix[k][j];
			}
		}
	}
	printf("\n");
	for (int i = 1; i < map.vexnum; i++) 
	{
		printf("最短路径:(%c,%c)=%d\n", map.vexs[in], map.vexs[i], dist[i]);
	}
	//如何求出最短路径 经过那些节点

}
int main() 
{
	GRAPH map = { {'1','2','3','4','5'},5,7,
		{
			{NO,10,NO,30,100},
			{NO,NO,50,NO,NO},
			{NO,NO,NO,NO,10},
			{NO,NO,20,NO,60},
			{NO,NO,NO,NO,NO}
		}
	};
	int in = 0;		//'1'这个顶点进来,找到其他顶点距离
	int dist[MAX];	
	DijKstra(map, in, dist);
	return 0;
}

        2.最值问题

                 Q:求最大值?

主体:

#include <stdio.h>
#define NUM   5
int arr[NUM][NUM] = { 0 };
//临时数组
int maxArr[NUM][NUM] = { 0 };
int count = 0;
//返回 a b 中大的那一个
int Max(int a, int b)
{
	return ((a > b) ? a : b);
}
//初始化数组
void initArr();
//获取最大路径
int getMax(int i, int j);
int main()
{
	initArr();

	int num = getMax(0, 0);
	
	printf("num:%d,count:%d\n", num,count);

	while (1);
	return 0;
}
//初始化数组
void initArr()
{
	arr[0][0] = 9;
	arr[1][0] = 4; arr[1][1] = 7;
	arr[2][0] = 5; arr[2][1] = 3; arr[2][2] = 1;
	arr[3][0] = 2; arr[3][1] = 4; arr[3][2] = 4; arr[3][3] = 1;
	arr[4][0] = 7; arr[4][1] = 5; arr[4][2] = 3; arr[4][3] = 2; arr[4][4] = 4;

	for (int i = 0; i < NUM; i++)
	{
		for (int j = 0; j < NUM; j++)
		{
			maxArr[i][j] = -1;
		}
	}
}

核心函数getMax的实现与逐步优化 :

①版本一:递归暴力求解。

(会有重复搜的地方---->左支向下搜索,完毕后,进行右支搜索,会有重复的搜索部分)

//获取最大路径
int getMax(int i, int j)
{
	//step1 :递归方式  每一步都计算  爆破法
	if (NUM == i) return arr[i][j];//越界  循环结束

	int n = getMax(i + 1, j);
	int m = getMax(i + 1, j + 1);

	count++;//统计计算次数

	return arr[i][j] + Max(n, m);
}

②版本二:优化上述问题,左支自底向上求解出的max将其存储起来,等到第二次搜索时,若已经标记过就不用再搜索了,直接用就可以。

//获取最大路径
int getMax(int i, int j)
{
	//step2 :递归方式  有一些没有意义的递归 要省略     存储之前递归计算出来的结果  直接用 而不是每次都递归计算出来再用
	if (maxArr[i][j] != -1) return maxArr[i][j];
	/*省略就体现在这一步, 因为标记只会标记较优解(下面走过的路, 已经额外存储过了, 比如左边搜过了, 进行一系列的标记max,
	当右边搜到相同子分支的时候, 就没有必要搜了(自下而上将其求解出最优解了, 没有必要再去搜了))*/
	count++;
	if (NUM == i)
	{
		maxArr[i][j] = arr[i][j];
	}
	else
	{
		int n = getMax(i + 1, j);
		int m = getMax(i + 1, j + 1);

		maxArr[i][j] = arr[i][j] + Max(n, m);
	}
	return maxArr[i][j];
}

③版本三:递归写法--->优化成循环写法(减少函数调用的开销

//获取最大路径
int getMax(int i, int j)
{
	//step3 :循环方式  直接从下往上加
	//先给最下面一层赋值
	for (int i = 0; i < NUM; i++)
		maxArr[NUM - 1][i] = arr[NUM - 1][i];
	//循环 一层层 加  一层层往上赋值
	for (int i = NUM - 2; i >= 0; i--)
	{//从下往上
		for (int j = 0; j <= i; j++)
		{
			maxArr[i][j] = arr[i][j] + Max(maxArr[i + 1][j], maxArr[i + 1][j + 1]);
		}
	}
	//返回maxArr[0][0]
	return maxArr[0][0];
}

④版本四:由于要额外开辟一个maxArr用来存储搜索过的最优解,十分耗费空间的,

                于是可以用覆盖的方式,进行空间层面的优化。

//获取最大路径
int getMax(int i, int j)
{
	//step4 :循环方式  直接从下往上加  空间方面只用一行(采用覆盖的方式优化空间)
	int temp[NUM];

	//先给最下面一层赋值
	for (int i = 0; i < NUM; i++)
		temp[i] = arr[NUM - 1][i];
	//循环 一层层 加  一层层往上赋值
	for (int i = NUM - 2; i >= 0; i--)
	{//从下往上
		for (int j = 0; j <= i; j++)
		{
			temp[j] = arr[i][j] + Max(temp[j], temp[j + 1]);
		}
	}
	//返回
	return temp[0];
}

        3.背包问题

#include <stdio.h>
/*
	有N样物品		N:5
	容量为V的背包		V:20
	A		B		C		D		E
w: 3		5		6		7		9 
c: 2		8		7		4		1
32
*/
#define V   20
#define N   5
struct Items
{
	int w;//体积weight
	int c;//价值
};
Items wp[N] = { { 3, 2}, { 5,8 }, { 6, 7}, { 7,4 }, { 9,1 } };
//返回 a b 中大的那一个
int Max(int a, int b)
{
	return ((a > b) ? a : b);
}
int main()
{
	int temp[100] = { 0 };//存储各种体积对应的价值
	for (int i = 0; i < N; i++)
	{//种类搭配
		for (int j = wp[i].w; j <= V; j++)
		{//j表示体积
			temp[j] = Max(temp[j], temp[j - wp[i].w] + wp[i].c);
			printf("i:%d,j:%d,temp[%d-%d]:%d,temp[%d]:%d\n",
				i, j, j, wp[i].w, temp[j - wp[i].w],j,temp[j]);
		}
	}
	printf("max:%d\n", temp[V]);
	return 0;
}

 ①j++表示什么?

       当i=0的时候,表示只可以装第一个物品, 所以这边temp 的变化是这样的(temp[20]=12是因为6个w=3的物品,价值为2,故6*2),当i=1的时候,表示可以在原来的基础上搭配第二个物品->依次更新temp,一直到i=4完成最后一次的更新。

②temp[j-wp[i].w]+wp[i].c

        表示如果在原来temp数组的方案商空出i=1的这个item的体积对应的价值再加上i=1的item的价值,去和对应temp[j]价值进行比较--->取较大的temp值进行存储即可。例:当i=2,temp[14]=18表示当上限体积给到14的时候,仅有0和1两种物品,最优价值可以达到18。

        4.哈夫曼编码

 Day14/15:哈夫曼树、哈弗曼编码(压缩与解压缩)__Brooke_的博客-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Ocean__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值