一、算法思想基础
1.五大算法思想:
①分治思想
快排、分组排序、归并排序、二分查找
②贪心算法/贪婪算法
大的问题 归纳成小问题 然后迭代
1)A星寻路算法
能且只能做当前看来最优的选择 如此反复 试图得到最终最优解
缺陷:
1. 并非一定能得到整体最优解
2. 每一步都是局部最优2)最值思想:
3)背包问题:
有一个体积为V的背包
有N种物品 体积和价值各不相同
求价值最高的组合方式4)迪杰斯卡拉:求最短路径
③ 动态规划
④ 动态回溯--->递归 n皇后问题
⑤ 分支定界2.贪心算法的基本思想
3.贪心算法的常见应用:
①背包问题(货物装载问题)
②最短路径问题--->dijkstra算法
③哈夫曼编码
④短作业调度问题
二、具体问题分析与代码实现:
1.最值问题最短路径问题--->dijkstra算法
整个算法的流程的关键--->两个内部的循环
①第一个for:访问集合内的点都被标记为了flag=1,
所以我们需要在剩下的点中找到起点到当前点距离最短的(贪心),
并记录min=dist[j],将这个点标记,k表示获取到的其下标
②第二个for:在上一个for完成扩充点的基础上
(扩充完点之后,最新扩充的这个点的dist from 起点 to 新点 就不会再改变了!!!)
就要开始遍历剩下的点,寻找是否有更优的路径。
关键比较对象:min+map.matrix[k][j]与dist[j]
其中min就是dist[k]=起点到k点最短的距离,加上matrix[k][j](即k到j的距离) 就是表示起点到j这个点的距离。
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#define NO 0xFFFFFF //不连通
#define MAX 10 //不能直接定义太大数组
//简单描述一下图
typedef struct graph
{
char vexs[MAX]; //顶点数组
int vexnum; //顶点数
int arcnum; //边数
int matrix[MAX][MAX]; //权值数组
}GRAPH,*LPGRAPH;
void DijKstra(GRAPH map, int in, int dist[])
{
int i = 0;
int flag[MAX]; //成功获取路径(进入了扩充的顶点范围内)的标记
//求出当前节点到其他节点距离
for (int i = 0; i < map.vexnum; i++)
{
flag[i] = 0;
dist[i] = map.matrix[in][i]; //当前节点到其他节点距离遍历第一行权值数组
}
flag[in] = 1;
dist[in] = 0;
int min;
int k=0;
int j;
//2.扩充顶点
//数组存储顶点从下标0存储
for (i = 1; i < map.vexnum; i++) //i=1本质是扩充第二个顶点
{
min = NO; //不连通的值
/*第一个循环:是用来找到目前未扩充的且入口到其点距离最小的那个点*/
for (j = 1; j < map.vexnum; j++)
{
if (flag[j] == 0 && dist[j] < min)
{
min = dist[j];
k = j; //连通的状态
}
}
flag[k] = 1;//找到后,将其标记为1--->代表已经进入扩充的名单内了。
/*第二个循环:判断剩下没进入+有更加适合的路径的点,更新dist距离数组*/
for (j = 1; j < map.vexnum; j++)
{
if (flag[j] == 0 && (min + map.matrix[k][j]) < dist[j])
{
dist[j] = min + map.matrix[k][j];
}
}
}
printf("\n");
for (int i = 1; i < map.vexnum; i++)
{
printf("最短路径:(%c,%c)=%d\n", map.vexs[in], map.vexs[i], dist[i]);
}
//如何求出最短路径 经过那些节点
}
int main()
{
GRAPH map = { {'1','2','3','4','5'},5,7,
{
{NO,10,NO,30,100},
{NO,NO,50,NO,NO},
{NO,NO,NO,NO,10},
{NO,NO,20,NO,60},
{NO,NO,NO,NO,NO}
}
};
int in = 0; //'1'这个顶点进来,找到其他顶点距离
int dist[MAX];
DijKstra(map, in, dist);
return 0;
}
2.最值问题
Q:求最大值?
主体:
#include <stdio.h>
#define NUM 5
int arr[NUM][NUM] = { 0 };
//临时数组
int maxArr[NUM][NUM] = { 0 };
int count = 0;
//返回 a b 中大的那一个
int Max(int a, int b)
{
return ((a > b) ? a : b);
}
//初始化数组
void initArr();
//获取最大路径
int getMax(int i, int j);
int main()
{
initArr();
int num = getMax(0, 0);
printf("num:%d,count:%d\n", num,count);
while (1);
return 0;
}
//初始化数组
void initArr()
{
arr[0][0] = 9;
arr[1][0] = 4; arr[1][1] = 7;
arr[2][0] = 5; arr[2][1] = 3; arr[2][2] = 1;
arr[3][0] = 2; arr[3][1] = 4; arr[3][2] = 4; arr[3][3] = 1;
arr[4][0] = 7; arr[4][1] = 5; arr[4][2] = 3; arr[4][3] = 2; arr[4][4] = 4;
for (int i = 0; i < NUM; i++)
{
for (int j = 0; j < NUM; j++)
{
maxArr[i][j] = -1;
}
}
}
核心函数getMax的实现与逐步优化 :
①版本一:递归暴力求解。
(会有重复搜的地方---->左支向下搜索,完毕后,进行右支搜索,会有重复的搜索部分)
//获取最大路径 int getMax(int i, int j) { //step1 :递归方式 每一步都计算 爆破法 if (NUM == i) return arr[i][j];//越界 循环结束 int n = getMax(i + 1, j); int m = getMax(i + 1, j + 1); count++;//统计计算次数 return arr[i][j] + Max(n, m); }
②版本二:优化上述问题,左支自底向上求解出的max将其存储起来,等到第二次搜索时,若已经标记过就不用再搜索了,直接用就可以。
//获取最大路径 int getMax(int i, int j) { //step2 :递归方式 有一些没有意义的递归 要省略 存储之前递归计算出来的结果 直接用 而不是每次都递归计算出来再用 if (maxArr[i][j] != -1) return maxArr[i][j]; /*省略就体现在这一步, 因为标记只会标记较优解(下面走过的路, 已经额外存储过了, 比如左边搜过了, 进行一系列的标记max, 当右边搜到相同子分支的时候, 就没有必要搜了(自下而上将其求解出最优解了, 没有必要再去搜了))*/ count++; if (NUM == i) { maxArr[i][j] = arr[i][j]; } else { int n = getMax(i + 1, j); int m = getMax(i + 1, j + 1); maxArr[i][j] = arr[i][j] + Max(n, m); } return maxArr[i][j]; }
③版本三:递归写法--->优化成循环写法(减少函数调用的开销
//获取最大路径 int getMax(int i, int j) { //step3 :循环方式 直接从下往上加 //先给最下面一层赋值 for (int i = 0; i < NUM; i++) maxArr[NUM - 1][i] = arr[NUM - 1][i]; //循环 一层层 加 一层层往上赋值 for (int i = NUM - 2; i >= 0; i--) {//从下往上 for (int j = 0; j <= i; j++) { maxArr[i][j] = arr[i][j] + Max(maxArr[i + 1][j], maxArr[i + 1][j + 1]); } } //返回maxArr[0][0] return maxArr[0][0]; }
④版本四:由于要额外开辟一个maxArr用来存储搜索过的最优解,十分耗费空间的,
于是可以用覆盖的方式,进行空间层面的优化。
//获取最大路径 int getMax(int i, int j) { //step4 :循环方式 直接从下往上加 空间方面只用一行(采用覆盖的方式优化空间) int temp[NUM]; //先给最下面一层赋值 for (int i = 0; i < NUM; i++) temp[i] = arr[NUM - 1][i]; //循环 一层层 加 一层层往上赋值 for (int i = NUM - 2; i >= 0; i--) {//从下往上 for (int j = 0; j <= i; j++) { temp[j] = arr[i][j] + Max(temp[j], temp[j + 1]); } } //返回 return temp[0]; }
3.背包问题
#include <stdio.h>
/*
有N样物品 N:5
容量为V的背包 V:20
A B C D E
w: 3 5 6 7 9
c: 2 8 7 4 1
32
*/
#define V 20
#define N 5
struct Items
{
int w;//体积weight
int c;//价值
};
Items wp[N] = { { 3, 2}, { 5,8 }, { 6, 7}, { 7,4 }, { 9,1 } };
//返回 a b 中大的那一个
int Max(int a, int b)
{
return ((a > b) ? a : b);
}
int main()
{
int temp[100] = { 0 };//存储各种体积对应的价值
for (int i = 0; i < N; i++)
{//种类搭配
for (int j = wp[i].w; j <= V; j++)
{//j表示体积
temp[j] = Max(temp[j], temp[j - wp[i].w] + wp[i].c);
printf("i:%d,j:%d,temp[%d-%d]:%d,temp[%d]:%d\n",
i, j, j, wp[i].w, temp[j - wp[i].w],j,temp[j]);
}
}
printf("max:%d\n", temp[V]);
return 0;
}
①j++表示什么?
当i=0的时候,表示只可以装第一个物品, 所以这边temp 的变化是这样的(temp[20]=12是因为6个w=3的物品,价值为2,故6*2),当i=1的时候,表示可以在原来的基础上搭配第二个物品->依次更新temp,一直到i=4完成最后一次的更新。
②temp[j-wp[i].w]+wp[i].c
表示如果在原来temp数组的方案商空出i=1的这个item的体积对应的价值再加上i=1的item的价值,去和对应temp[j]价值进行比较--->取较大的temp值进行存储即可。例:当i=2,temp[14]=18表示当上限体积给到14的时候,仅有0和1两种物品,最优价值可以达到18。