import os
from shutil import copy,rmtree
import random
def mk_file(file_path:str):
if os.path.exists(file_path): #若文件存在,则先删除原文件,再重新创建
rmtree(file_path)
os.makedirs(file_path)
def main():
#保证随机可复现
random.seed(0)
#将数据集的1/3划分到验证集中
split_rate = 1 / 3
#
##cwd=os.getcwd()\
cwd = r"D:\Dataset";
data_root = os.path.join(cwd, "data_set_MMCBNU") #分隔后的数据集放在这
origin_path = os.path.join(cwd, "MMCBNU_6000/MMCBNU_6000/Captured images") #原来的数据集位置
#print(os.listdir(origin_path)[:-1]) 需要去掉最后一个.mat文件(与下行代码等价)
origin_class_path = [p for p in os.listdir(origin_path) ### 相当于要获得 但单独的标签"001".....
if os.path.isdir(os.path.join(origin_path, p))]
指静脉MMCBNU_6000数据集分割代码
本文详细介绍了如何运用Python和深度学习技术,针对MMCBNU_6000指静脉数据集进行图像分割,涵盖了数据预处理、模型构建、训练和评估的全过程。
摘要由CSDN通过智能技术生成