Hadoop、Spark、Hive到底是什么,做算法要不要学?

最近我发现,很多萌新说着想要做算法工程师,但是却对这个岗位的要求以及工作内容一无所知。以为学一个Python,再学一些机器学习、深度学习的模型就可以胜任了。工作就是用Python不停地写模型。

显然,这样的想法是有问题的,如果真这么干,即使通过了面试成功入职,也会干得非常痛苦。因为你会发现这也不知道那也不知道,做啥都很吃力,需要一段很长的时间学习。而这种为了应付工作临时抱佛脚的学习往往很难深入,有种不停打补丁的感觉。

今天就和大家聊聊算法工程师的几项基本功,看看除了算法和模型之外,还需要学些什么。

hadoop

首先当然是hadoop,不过hadoop不是一门技术,而是一个大数据框架。它的logo是一只黄色的小象,据说是这个项目的创建者用女儿的玩具命名的。

经过了很多年的发展,现在hadoop框架已经非常成熟,衍生出了一个庞大的家族。有多庞大呢,我在google里给大家找了一张图,大家可以看看感受一下,这里面有多少是自己知道的,有多少没听说过。

当然对于算法工程师来说,hadoop家族并不需要全部了解,只需要着重关注几个就可以了。

hdfs

首先是hdfs,hdfs是hadoop框架中的分布式文件系统。因为在工业场景当中,数据量是非常庞大的,动辄TB甚至是PB量级。如此庞大的数据,显然不可能存在一块磁盘里,必须要分布式存储,分成不同的部分,不同的部分分开存储。通过hdfs我们可以很方便地实现这一点,可以使用一些简单的shell命令管理大规模的数据。

hdfs的内部是分片(block)存储的,并且设计了严谨的容错机制,尽可能地保证了数据的准确性。一般我们用hdfs存储一些离线数据,也就是对延迟要求不高的数据,比如模型的训练数据。它的特点是存储能力很强,但是读取速度很慢,中间的延迟很长。

因为训练数据的规模往往也非常庞大,并且从用户线上的实时行为转化成模型需要的输入,中间需要大量的计算步骤。这会带来巨大的计算压力,因此对于这样的数据,我们往往都是借助于hdfs做离线处理。设计一套数据处理流程,进行若干步骤的处理,每一步处理的中间数据都存储在hdfs上。

模型训练的时候,也通过挂载hdfs的方式直接读取tensor进行训练。

MapReduce

hdfs是hadoop的存储系统,hadoop同样也推出过一套计算系统,就是MapReduce。

我在之前的文章曾经介绍过MapReduce的原理,其实非常简单,它将数据的计算过程抽象成了两个步骤。一个步骤叫map,一个步骤叫reduce。

map步骤做的数据的映射,比如我们从一个很大的json文件当中读取出我们想要的字段,在这个步骤当中,我们从json获得了几个字段。

reduce步骤做的是汇总,我们把刚刚map阶段得到的结果,按照我们的想法汇聚在一起,比如计算平均数、中位数等等。

这个想法巧妙的地方在于map和reduce都是可以分布式进行的,比如map阶段,我们可以对hdfs里的每一个文件都设置一个map读取文件进行处理。map阶段结束之后,我们也可以起多个reducer对map的结果进行加工,尽可能导致了整个过程都是并发进行的,也就保证了数据的处理速度。

虽然MapReduce的提出到现在已经十多年了,但仍然没有淘汰,还在很多场景当中广泛使用。

hive

hive也是hadoop家族核心的一员,它的思想也很巧妙,做了一件非常有利于程序员的事情。

使用hdfs以及MapReduce其实就足够应付几乎所有大数据计算的场景了,但是足够应付并不代表应付起来很舒服。有些场景使用起来就不是很顺手,比如说我们要把两份数据关联在一起,一份是用户点击数据,一份是商品数据,我们想要得到用户点过的商品信息。大数据培训

你会发现使用MapReduce去做这样一件事情会非常蛋疼,要写很多代码。所以有人突发奇想,我们能不能利用hdfs以及MapReduce做一套好用一点的数据处理系统,比如说将数据全部格式化,然后像是数据库一样使用SQL来进行数据的查询和处理?于是就有了hive。

hive底层的运算框架就是MapReduce,只不过有了表结构之后,很多之前很复杂的操作被大大简化了。尤其是数据表之间的join、group by等操作,之前需要写大量MapReduce的代码,现在几行SQL就搞定了。

不过hive毕竟不是数据库,它的使用还是有一些它自己专属的奇淫技巧。比如说避免数据倾斜的情况,比如说设置合理的内存分片,比如说udf的使用等等。

只是懂SQL的语法是写不好hive的,多少还需要做一些深入的了解。

spark

说到spark相信很多同学也是久仰大名,它是一个非常著名的开源集群计算框架,也可以理解成一个分布式计算框架。

spark在MapReduce的基础上对MapReduce当中的一些问题进行了优化,比如MapReduce每次运算结束之后都会把数据存储在磁盘上,这会带来巨大的IO开销。

而spark使用了存储器内运算技术,可以尽量减少磁盘的写入。这其中的技术细节看不懂没有关系,我们只需要知道它的运算性能比MapReduce快很多就可以了,一般来说运算速度是MapReduce的十倍以上。并且spark原生支持hdfs,所以大部分公司都是使用hdfs做数据存储,spark来进行数据运算。

在hadoop推出了hive之后,spark也推出了自己的spark SQL。不过后来hive也支持使用spark作为计算引擎代替MapReduce了,这两者的性能上差异也就很小了,我个人还是更喜欢hive一点,毕竟写起来方便。

另外spark除了计算框架之外,当中也兼容了一些机器学习的库,比如MLlib,不过我没有用过,毕竟现在机器学习的时代都快结束了。很少再有使用场景了,大家感兴趣也可以了解一下。

总结

最后做一个简单的总结,总体上来说想要成为一名合格的算法工程师,hadoop、MapReduce、hive这些或多或少都需要有所了解。不说能够精通到原理级,但至少需要会用,大概知道里面怎么回事。

这也是工业界和实验室里的最大区别,毕竟学校里的实验数据量也不会很大,直接放在内存里就完事了。所以数据处理一般都是numpy + pandas什么的,但是在公司里,几乎没有pandas的用武之地,毕竟数据量太大了,不可能都放内存里,必须要借助大数据计算平台来解决。

本文作者:梁唐

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
HadoopSpark 都是大数据处理框架,但它们各自的使用场景略有不同。 Hadoop 的使用场景: 1. 批处理:Hadoop 最初是为了处理离线批处理任务而设计的,例如网页索引、数据仓库等任务。Hadoop 的 MapReduce 模型可以处理大规模数据集,具有很好的可扩展性和容错性。 2. 存储:Hadoop 的分布式文件系统 HDFS 可以存储大规模数据集,支持高容错性和高可用性,适合存储大规模数据集。 3. 数据仓库:Hadoop 生态系统中的组件 Hive、HBase、Pig 等可以帮助构建数据仓库,支持 SQL 查询和大规模数据分析。 Spark 的使用场景: 1. 迭代计算:Spark 的内存计算能力使其在迭代计算中表现出色。迭代计算通常涉及多次数据处理,例如机器学习算法、图计算等,Spark 在这些领域有很好的应用。 2. 实时流处理:Spark Streaming 可以将实时数据流转换为微批处理,支持实时数据处理和分析。 3. 复杂数据处理:Spark 支持复杂数据类型和数据结构,例如图形数据、图像数据等。 4. 与其他框架集成:Spark 可以与其他框架集成,例如 Hive、HBase、Kafka 等,可以扩展其应用范围。 总之,HadoopSpark 都有自己的适用场景,选择哪种框架取决于具体的需求和场景。如果需要批处理大量数据,Hadoop 可能是更好的选择;如果需要处理实时数据流或者进行迭代计算,Spark 可能更适合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值