想进入计算机视觉领域,OpenCV 几乎是绕不开的第一站。它是一个开源的视觉工具库,拥有丰富的图像处理、识别、追踪等能力,被广泛用于教育、科研和工业场景。
但 OpenCV 功能强大,文档复杂,很多初学者“安装完不知道干啥”,或者“照着代码跑不明白”。为此,我们整理了一份 系统学习路线图,覆盖从基础原理到项目实战,帮助你逐步掌握 OpenCV 的核心技能。
免费分享一套人工智能+大模型入门学习资料给大家,如果想自学,这套资料很全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
一、阶段一:基础准备
🧠 学什么?
-
Python 基础语法(建议掌握类、函数、列表推导式等)
-
NumPy 基础(OpenCV 图像处理底层是数组计算)
-
OpenCV 安装与环境配置(推荐使用 pip、conda 或 Jupyter)
✅ 推荐资源:
-
《Python 编程:从入门到实践》
-
Bilibili 搜索“OpenCV 安装教程”
-
Google Colab / Anaconda 环境搭建教程
二、阶段二:图像基础处理
这一阶段是 OpenCV 的核心入门,包括图像读取、颜色空间转换、几何变换、图像滤波等。
🎯 学习模块:
-
图像的读取、显示与保存(
cv2.imread
,cv2.imshow
,cv2.imwrite
) -
BGR 与 RGB、HSV 转换(颜色空间变换)
-
图像缩放、旋转、裁剪、仿射变换
-
图像滤波:均值模糊、高斯模糊、中值滤波
-
边缘检测:Canny、Sobel、Laplacian
-
图像阈值与二值化处理
-
图像直方图分析(亮度、对比度)
✅ 推荐练习:
-
图像模糊对比实验
-
不同滤波方式的效果对比
-
用旋转矩阵实现图像翻转与旋转
三、阶段三:图像分析与特征提取
理解图像中的“结构”,是计算机视觉的关键。本阶段重点在“轮廓识别”、“图形检测”、“特征匹配”。
🎯 学习模块:
-
轮廓检测与绘制(
cv2.findContours
,cv2.drawContours
) -
边界框、最小矩形、外接圆等形状分析
-
霍夫变换:直线检测、圆检测
-
特征点检测:Harris、SIFT、SURF、ORB
-
图像匹配与拼接(基于描述子的匹配)
✅ 推荐练习:
-
用 ORB 实现两张图像的特征匹配
-
使用霍夫变换检测图像中的圆形/直线
-
提取物体轮廓并测量面积、周长
四、阶段四:视频处理与目标跟踪
图像会动,就变成了视频。OpenCV 同样可以高效处理摄像头和视频文件,支持实时检测与追踪。
🎯 学习模块:
-
视频读取与帧处理(
cv2.VideoCapture
,cv2.VideoWriter
) -
帧差法 / 背景建模实现运动目标检测
-
多目标追踪算法:KCF、CSRT、MOSSE
-
结合鼠标事件选择追踪区域
✅ 推荐练习:
-
用摄像头实现运动目标追踪
-
视频文件帧提取、灰度化处理、保存新视频
-
使用 CSRT 实现多目标追踪 Demo
五、阶段五:项目实战与综合应用
掌握基本模块后,就可以尝试一些更复杂的实战项目,把碎片化知识融合在一起。
🛠 项目建议:
-
人脸识别与打马赛克系统(Haar + 视频处理)
-
车道线检测项目(Canny + 霍夫变换)
-
摄像头扫码识别(二维码检测 + 解码)
-
AR 实时贴纸/变脸系统(关键点检测 + 图像融合)
-
图像拼接全景图系统(特征匹配 + 单应性矩阵)
✅ 进阶工具推荐:
-
Flask + OpenCV 实现 Web 可视化界面
-
将项目部署在 Raspberry Pi、Jetson Nano 上
-
与 YOLO、TensorFlow、ONNX 集成模型进行二次识别
六、阶段六:与深度学习结合(可选进阶)
OpenCV 提供了 DNN 模块,支持加载训练好的深度学习模型,如 YOLO、MobileNet、ResNet,实现分类、检测、分割等任务。
🎯 学习方向:
-
使用
cv2.dnn.readNetFromONNX()
加载模型 -
读取 YOLOv5 导出的 ONNX 权重进行推理
-
搭建前端界面进行实时识别展示
七、学习周期建议
阶段 | 所需时间(建议) | 说明 |
---|---|---|
基础准备 | 3~5 天 | 配置开发环境,掌握 Python/Numpy |
图像处理 | 7~10 天 | 入门 OpenCV 核心函数 |
图像分析 | 5~7 天 | 学会形状、边缘、轮廓等识别方法 |
视频处理 | 5~7 天 | 实现摄像头交互、对象跟踪 |
项目实战 | 持续进行 | 每个项目可用 1~2 周深化学习 |
结语
OpenCV 是一扇通往计算机视觉世界的大门。如果你认真走完这条路线,不仅能写出自己的视觉系统,还能为后续学习深度学习、目标检测、3D视觉等打下坚实基础。