图生成论文

这篇博客综述了图生成领域的最新研究,包括2020年至2022年的顶会论文。文章重点介绍了深度学习在图生成模型中的应用,如3D分子生成、事件检测、图表示学习和药物推荐。还讨论了图生成模型的评估指标,提出存在的问题和解决方案。此外,提到了预训练GAN在微调和生成效率上的作用。文章突出了生成对抗网络(GAN)在图网络中的重要性,以及如何通过等变网络和曲率分析来改进图生成的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

综述

  1. 综述 | 生成对抗网络(GAN)在图网络中的应用:综述 | 生成对抗网络(GAN)在图网络中的应用
  2. 论文导读 | 图生成模型综述:论文导读 | 图生成模型综述
  3. 论文导读 | 深度图生成模型简介:论文导读 | 深度图生成模型简介
  4. 图表示学习Part 3:生成图模型-图生成的深度生成模型:图表示学习Part 3:生成图模型-图生成的深度生成模型
  5. 深度图生成模型综述:5类模型及前景:深度图生成模型综述:5类模型及前景(附PDF下载)
  6. (读论文)学习图的深度生成模型:读论文学习图的深度生成模型

图生成最新顶会论文2022

  1. Equivariant Diffusion for Molecule Generation in 3D(3D 中分子生成的等变扩散)

这项工作介绍了一种与欧几里得变换等效的 3D 分子生成扩散模型。我们的 E(3) 等变扩散模型 (EDM) 学习使用等变网络对扩散过程进行去噪,该网络在连续(原子坐标)和分类特征(原子类型)上联合运行。此外,我们提供了一种概率分析,它允许使用我们的模型对分子进行似然计算。在实验上,所提出的方法在生成样本的质量和训练时的效率方面明显优于以前的 3D 分子生成方法。

  1. A Graph Convolutional Network with Adaptive Graph Generation and Channel Selection for Event Detection(用于事件检测的具有自适应图生成和通道选择的图卷积网络)

图卷积网络已成功应用于事件检测任务。然而,现有工作严重依赖来自外部解析器的固定句法解析树结构。此外,为聚合提取的信息内容仅由(句法)边缘方向或类型决定,而与顶点具有什么语义无关,这有点死板。通过这项工作,我们提出了一种新颖的图卷积方法,该方法结合了自适应图生成技术和多通道选择策略。自适应图生成技术通过使用 ST-Gumbel-Softmax 技巧使梯度能够通过图采样层。多通道选择策略允许两个相邻顶点自动确定要通过哪些信息通道进行信息提取和聚合。所提出的方法在 ACE2005 数据集上实现了最先进的性能。

  1. Evaluation Metrics for Graph Generative Models: Problems, Pitfal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值